Transtentorial Herniation After Unilateral Infarction of the Anterior Cerebral Artery

Stefanie Leistner, MD; Friedrich Boegner, MD; Peter Marx, MD; Hans-Christian Koennecke, MD

Background—Fatal cerebral herniation is a common complication of large (“malignant”) middle cerebral artery infarcts but has not been reported in unilateral anterior cerebral artery (ACA) infarction.

Case Description—We report a 47-year-old woman who developed an acute left hemiparesis during an attack of migraine. Cranial CT (CCT) was normal but demonstrated narrow external cerebrospinal fluid compartments. Transcranial Doppler sonography was compatible with occlusion of the right ACA. Systemic thrombolytic therapy with tissue plasminogen activator was initiated 105 minutes after symptom onset. Follow-up CCT 24 hours after treatment revealed subtotal ACA infarction with hemorrhagic conversion. Two days later, the patient suddenly deteriorated with clinical signs of cerebral herniation, as confirmed by CCT. An extended right hemicraniectomy was immediately performed. Within 6 months, the patient regained her ability to walk but remained moderately disabled.

Conclusions—This is the first reported case of unilateral ACA infarct leading to almost fatal cerebral herniation. Narrow external cerebrospinal fluid compartments in combination with early reperfusion, hemorrhagic transformation, and additional dysfunction of the blood-brain barrier promoted by tissue plasminogen activator and migraine may have contributed to this unusual course. (Stroke. 2001;32:649-651.)

Key Words: brain edema ■ migraine ■ stroke, ischemic ■ thrombolysis
Hemorrhagic transformation of cerebral infarction is a common phenomenon, especially after thrombolytic therapy. However, a retrospective analysis of the first European Collaborative Acute Stroke Study data revealed that clinical worsening in patients with hemorrhagic conversion after thrombolysis is associated only with the most severe form of transformation (ie, parenchymal hemorrhage).6 Nevertheless, hemorrhagic conversion in our patient may have played a role, probably because of the coincidence of other potential factors increasing edema. Direct effects of blood products are known to alter the permeability of the blood-brain barrier, thereby triggering edema formation and possible clinical worsening.7,8 This assumption is confirmed by the CT-morphological course in our case, demonstrating an obvious increase of infarct edema coincidentally with signs of hemorrhagic transformation (Figures 1 and 2).

Direct and indirect effects of the thrombolytic agent itself may further have promoted local brain swelling. Tissue plasminogen activator specifically converts the thrombin-bound proenzyme plasminogen to the active enzyme plasmin.9 In vitro, plasmin causes an increase of permeability in human vein endothelial cells, directly damages cell membranes, and finally may lead to lysis of endothelial cells.10 Similar effects have been demonstrated in human arterial endothelium.11 These findings suggest that activation of plasminogen, as in thrombolytic therapy for ischemic stroke, might damage the integrity of the blood-brain barrier in addition to the endothelial effects due to ischemia.7

Finally, the coincidence of a typical migrainous attack with the onset of ischemic symptoms gives rise to further considerations. The stroke in our patient did not fulfill the criteria of a migraine-induced cerebral infarct according to the International Headache Society but has to be considered as migraine-associated.12,13 Migraine is known to activate peripheral trigeminal fibers with consecutive neurogenic inflammation of the meninges, possibly leading to vasodilation and increased permeability of the blood-brain barrier.14–16 Clinical cases like the one reported by Meaney et al,17 who detected a reversible unilateral cerebral edema by MRI during an attack of hemiplegic migraine, give further evidence for this assumption.

In conclusion, only the coincidence of several factors that potentially intensify postischemic brain swelling, in combination with the patient’s limited capacity to compensate for an intracranial mass lesion, facilitated the atypical and unique course of unilateral ACA infarction leading to cerebral herniation and almost fatal outcome. However, the significance of each factor remains speculative and debatable. Whether special caution may be warranted in younger patients with migraine-associated cerebral infarction suitable for thrombolytic therapy requires further observations of similar cases.

References


12. Deleted in proof.


Transtentorial Herniation After Unilateral Infarction of the Anterior Cerebral Artery
Stefanie Leistner, Friedrich Boegner, Peter Marx and Hans-Christian Koennecke

Stroke. 2001;32:649-651
doi: 10.1161/01.STR.32.3.649

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/32/3/649

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/