Race and Sex Differences in the Effects of Dietary Potassium Intake on the Risk of Stroke
To the Editor:
We read with great interest the 2 articles by Fang et al and Bazzano et al on the association between dietary potassium intake and stroke mortality. The study by Fang et al has revealed an inverse association between hazard of stroke death and dietary potassium intake in hypertensive men and black men only. On the other hand, Bazzano et al have shown that there was no significant difference in the relation of dietary potassium intake to hazard of stroke that was due to ethnicity or hypertensive status. We would agree with Bazzano et al that their findings of an independent relationship between low potassium intake and increased hazard of stroke in a representative sample of the US population have important clinical and public health implications. However, we believe that the race and sex differences in the effects of dietary potassium intake on the risk of stroke, which was reported by Fang et al, also have important clinical implications as mentioned below.

Recent clinical, experimental, and epidemiologic evidences suggested that dietary potassium intake is inversely related to blood pressure. Therefore, considering that hypertension is the most important known risk factor for stroke, dietary potassium intake may be inversely related to the risk of stroke via blood pressure.

Clegg et al showed that the sodium concentration of erythrocytes from patients with untreated essential hypertension was higher than that of normotensive control subjects. Furthermore, recent evidence has demonstrated that the high dietary potassium intake lowered the blood pressure in the hypertensive rats, associated with the increase of erythrocyte Na\(^+\)-K\(^+\)-ATPase activity. These findings indicate that high dietary potassium intake decreases intracellular sodium concentration, which will result in lowering of blood pressure. An intracellular sodium concentration is thought to have a paramount role in the contractility of vascular smooth muscle cells; an increase in its concentration favors the contraction process. However, erythrocytes have been used routinely to examine the intracellular sodium homeostasis of hypertensive patients because human vascular smooth muscle cells are not readily available.

Several studies showed that the sodium concentration in erythrocytes from normotensive blacks was higher than that of their white counterparts and that erythrocytes of normotensive men had a higher sodium concentration than those from women. Since essential hypertension is more common in blacks and men as compared with whites and women of premenopausal age, and because increased sodium concentration has frequently been demonstrated in erythrocytes of hypertensive patients, it is possible that the higher erythrocyte sodium concentration in blacks and men reflects differences in the cellular regulation of sodium, which increase the likelihood of developing hypertension. Lasker et al revealed that the erythrocyte Na\(^+\)-K\(^+\)-ATPase activity was lower in blacks and men as compared with their counterparts, namely, whites and women, while the sodium concentration in erythrocytes from blacks and men was higher than that of their counterparts, and that there was a significant inverse correlation between the Na\(^+\)-K\(^+\)-ATPase activity and erythrocyte sodium concentration.

These differences based on race and sex in the erythrocyte sodium concentration may have important clinical implications in establishing the useful indication of high dietary potassium intake in the future. We think that a high potassium diet should be indicated for hypertensive patients whose erythrocytes demonstrate a high sodium concentration. However, further studies are required to assess the optimal sodium concentration in erythrocytes of hypertensive patients that can be applied to the indication of high dietary potassium intake.

Shinji Fukui, MD
Nobusuke Tsuzuki, MD, DMSc
Hiroshi Nawashiro, MD, DMSc
Katsusji Shimia, MD, DMSc
Department of Neurosurgery
National Defense Medical College
Tokorozawa, Japan


Response
We thank Dr Fukui and colleagues for their interest in our work. Their discussion of possible mechanisms for race and sex differences in the blood pressure–lowering effect of dietary potassium intake is intriguing. In a meta-analysis of 33 randomized controlled trials, we found that oral potassium supplementation reduced blood pressure significantly in both hypertensive and normotensive participants and in both black and white subjects. Moreover, the blood pressure reduction was greater in hypertensives compared with normotensives and in blacks compared with whites. Most studies included in the meta-analysis did not show gender differences in blood pressure reduction related to potassium supplementation.

Very few prospective cohort studies have examined the relationship between dietary potassium intake and stroke incidence and mortality. Khaw and Baret-Connor conducted one of the earliest population-based prospective cohort studies to report...
Letters to the Editor

To the Editor:

We read with interest the study reported by Vermeer et al on the prevalence and risk factors for silent brain infarcts in the Rotterdam scan study.1

We were, however, very surprised that the authors neither commented on nor investigated the presence of associated atrial fibrillation (AF) as a risk factor in this study population. As we already know, AF is an independent risk factor for stroke,2 and many other investigators have firmly established the presence of silent cerebral infarction (SCI) in patients with atrial fibrillation.3,4 For example, the Veteran Affairs Stroke Prevention in Nonrheumatic Atrial Fibrillation Investigators reported that 14.7% of neurologically normal male patients with nonvalvular AF had evidence of cerebral infarction on CT scanning.3 As with Vermeer et al,1 they too reported that an increasing age and a history of hypertension was associated with silent cerebral infarction at entry into the study. Angina was also a risk factor for SCI and was the only independent predictor for later development of symptomatic stroke. Nevertheless, SCI was not an independent predictor of subsequent (symptomatic) stroke in this AF population, although it must be noted that half of the study population were receiving warfarin as part of an intervention study.

Another study from Japan reported a much higher prevalence of SCI in lone AF patients examined with MRI: of 79 patients with lone AF (57 male, 22 female) on no anticoagulant therapy, silent cerebral infarcts were detected in 88% of patients. This high prevalence of SCI increased with age, and, importantly, there was no difference between those patients with paroxysmal and continuous AF.4 These observations are in contrast to a Danish report, which shows a low prevalence of SCI on CT in 30 patients with paroxysmal AF.5 We accept that there are no population studies to indicate whether AF is an independent risk factor for SCI, although the evidence above would suggest that a strong association between SCI and AF may exist.

Vermeer et al1 suggest that the odds ratio of both silent and symptomatic SCI increases with age, at 8% per year—but this could best be explained by an important risk factor from stroke that also increases with age, as is the case with AF.6 Another area of interest would be the relationship of SCI to cognitive function in the affected patients. Indeed, in the Rotterdam study population, an association between dementia and AF has been noted, and SCI would seem to be a likely mechanism.7

Bethan Freestone, MBChB, MRCP
Gregory Y.H. Lip, MD
Haemostasis, Thrombosis and Vascular Biology Unit
University Department of Medicine
City Hospital
Birmingham, United Kingdom


Response

Drs Freestone and Lip suggest that the rise in prevalence of silent brain infarcts with increasing age could be well explained by atrial fibrillation (AF), which also increases with age. We agree that it is indeed very interesting to examine the relationship between AF and silent brain infarcts in the general population. The high prevalence of silent brain infarcts in AF patients, who often suffer from small- and large-vessel disease as well,2 is insufficient proof of a direct relationship between AF and silent

Prevalence and Risk Factors of Silent Brain Infarcts in the Population

To the Editor:

We read with interest the study reported by Vermeer et al on the prevalence and risk factors for silent brain infarcts in the Rotterdam scan study.1

We were, however, very surprised that the authors neither commented on nor investigated the presence of associated atrial fibrillation (AF) as a risk factor in this study population. As we already know, AF is an independent risk factor for stroke,2 and many other investigators have firmly established the presence of silent cerebral infarction (SCI) in patients with atrial fibrillation.3,4 For example, the Veteran Affairs Stroke Prevention in Nonrheumatic Atrial Fibrillation Investigators reported that 14.7% of neurologically normal male patients with nonvalvular AF had evidence of cerebral infarction on CT scanning.3 As with Vermeer et al,1 they too reported that an increasing age and a history of hypertension was associated with silent cerebral infarction at entry into the study. Angina was also a risk factor for SCI and was the only independent predictor for later development of symptomatic stroke. Nevertheless, SCI was not an independent predictor of subsequent (symptomatic) stroke in this AF population, although it must be noted that half of the study population were receiving warfarin as part of an intervention study.

Another study from Japan reported a much higher prevalence of SCI in lone AF patients examined with MRI: of 79 patients with lone AF (57 male, 22 female) on no anticoagulant therapy, silent cerebral infarcts were detected in 88% of patients. This high prevalence of SCI increased with age, and, importantly, there was no difference between those patients with paroxysmal and continuous AF.4 These observations are in contrast to a Danish report, which shows a low prevalence of SCI on CT in 30 patients with paroxysmal AF.5 We accept that there are no population studies to indicate whether AF is an independent risk factor for SCI, although the evidence above would suggest that a strong association between SCI and AF may exist.

Vermeer et al1 suggest that the odds ratio of both silent and symptomatic SCI increases with age, at 8% per year—but this could best be explained by an important risk factor from stroke that also increases with age, as is the case with AF.6 Another area of interest would be the relationship of SCI to cognitive function in the affected patients. Indeed, in the Rotterdam study population, an association between dementia and AF has been noted, and SCI would seem to be a likely mechanism.7

Bethan Freestone, MBChB, MRCP
Gregory Y.H. Lip, MD
Haemostasis, Thrombosis and Vascular Biology Unit
University Department of Medicine
City Hospital
Birmingham, United Kingdom


Response

Drs Freestone and Lip suggest that the rise in prevalence of silent brain infarcts with increasing age could be well explained by atrial fibrillation (AF), which also increases with age. We agree that it is indeed very interesting to examine the relationship between AF and silent brain infarcts in the general population. The high prevalence of silent brain infarcts in AF patients, who often suffer from small- and large-vessel disease as well,2 is insufficient proof of a direct relationship between AF and silent
brain infarcts, of which the majority are lacunes. This relationship has not been examined in the general population. In patients with lacunar stroke, however, atrial fibrillation is rarely the causative factor. In our population-based study, a 12-lead ECG was recorded in all participants a few weeks before MRI scanning from 1995 to 1996. The presence of atrial fibrillation was diagnosed with a computer program, Modular ECG Analysis System (MEANS). In total, 32 participants had AF, of whom 22 had no infarcts on MRI, 8 had silent brain infarcts, and 2 had symptomatic infarcts. AF was not associated with the presence of silent brain infarcts (age- and sex-adjusted odds ratio 1.0, 95% CI 0.4 to 2.3). However, the number of participants with AF in our study was lower than expected in an elderly population. The use of MEANS to detect AF might have led to a misclassification of participants with AF. Moreover, we will certainly miss people with paroxysmal atrial fibrillation, especially because we recorded for only 10 seconds. If anything, this misclassification will have resulted in an underestimation of the association. Nevertheless, the absence of a relationship in our study and our finding that the vast majority of silent lesions were lacunes make it unlikely that AF is a contributing factor in the age-related increase in the prevalence of silent brain infarcts in the general population.

Sarah E. Vermeer, MD
Departments of Epidemiology & Biostatistics and Neurology
Albert Hofman, MD, PhD
Monique M.B. Breteler, MD, PhD
Department of Epidemiology & Biostatistics
Peter J. Koudstaal, MD, PhD
Department of Neurology
Erasmus Medical Center
Rotterdam, the Netherlands


Cerebral Atherosclerosis Causes Neurogenic Hypertension

To the Editor:

Su et al1 presented an excellent report regarding “the hypothesis that hypertension has a major role in the pathogenesis of atherosclerosis.” The results of their study were very similar to other findings previously reported.2 Both groups defended that essential arterial hypertension (EAH) is the major risk factor in the development of atherosclerosis. However, I offer some opposing comments upheld by many authors, based on clinical and neurosurgical evidences. First, EAH represents 90% to 95% of all cases of hypertension and is the main factor of risk in the generation of cerebrovascular and cardiovascular diseases. Secondly, generally there is a close correlation between age (about 35 years) and the incidence of essential hypertension3 as well as the onset of cerebral atherosclerosis.4,5 Third, 5 areas are associated with EAH6–9: denervation of the baroreceptors from the carotid sinus and aortic arc by atherosclerosis, and ischemia in the posterior hypothalamus and medulla oblongata (A1/C1 cell column, commissural portion of the nucleus solitarius, and A2/C2 cell column). Fourth, microvascular decompression of the left rostral ventrolateral medulla5 or the omental transplantation on the anterior perforated space6–9 can improve or normalize EAH—by restitution of the blood flow in the A1/C1 cell column using the first surgical technique, and because of revascularization in the lateral and posterior hypothalamus produced with the last technique. Therefore, ischemia in the posterior hypothalamus and nuclei of the medulla oblongata are the specific causes of neurogenic hypertension.

Based on the above-mentioned factors and the efficacy of both neurosurgical techniques in the treatment of EAH, we think that neurogenic hypertension represents the great majority of patients with essential hypertension. Therefore, as the specific cause is proven, this neurogenic hypertension type is defined as secondary. Moreover, as the onset of neurogenic hypertension and cerebral atherosclerosis are associated with age (about 35 years), these clinical findings suggest that in the pathogenesis of atherosclerosis, there exist a primary factor and a secondary factor.10 In my opinion, the primary factor is the main cause of atherosclerosis during the first decades of life; mechanical stresses generated by blood flow provoke a reactive biological response of the intima, ie, atherosclerotic changes.

For these reasons, we believe9,10 that the primary cause of neurogenic hypertension is of microvascular origin related to vascular anomalies and that atherosclerotic plaques located at the mouths of the arterial branches vascularize to the posterior hypothalamus and medulla oblongata. In other words, neurogenic hypertension is caused by atherosclerosis, and later on, arterial hypertension constitutes the most important risk factor that accelerates the development of atherosclerosis.

Hernando Rafael, MD
Hospital Santa Teresa Zacatecas
Mexico City, Mexico

Response

We would like to thank Dr Rafael for his interest and valuable comments on our recent article in Stroke.1 In our article, we did not address the mechanism of essential hypertension and the relationship between carotid atherosclerosis with neurogenic hypertension. We agree that neurogenic mechanisms may be important for the maintenance of most forms of hypertension. However, there are still insufficient evidences to implicate abnormal central nervous system (CNS) function as the primary cause of essential hypertension.2 The effect of lowering blood pressure by microvascular decompression of the left rostral ventrolateral medulla3 may be similar to blockade of the sympathetic nervous system, leading to vasodilatation. Our previous study revealed that thoracic sympathectomy might reduce blood pressure and elevate blood flow volume of carotid arteries4; that may partly explain one of the neurogenic mechanisms. However, the etiologies of essential hypertension are multifactorial: environmental, genetic, pathologic, and so on.5 The relief of hypertension from microvascular decompression surgery at the rostral ventrolateral medulla does not indicate CNS atherosclerosis as the unique cause of essential hypertension. The immediate postprocedural hemodynamic complications in patients receiving carotid stenting for severe carotid stenosis, including hypotension (22.4%) and hypertension (38.8%),6 indicate that release of compression from severe internal carotid artery stenosis does not always reduce blood pressure.

The causal relationship between hypertension and carotid atherosclerosis was reinforced by the findings of the dose-response effect of hypertension on carotid intima-media thickness and carotid atherosclerosis.7 Furthermore, the analysis of subjects with extracranial carotid atherosclerotic plaque scores ≥4 showed that 27.6% cases are normotensive.8 There are bodies of evidence demonstrating that hypertension may play a major role in carotid atherosclerosis1,7 and its progression.8,9 A recent study provided convincing data that treatment for hypertension has a beneficial effect on the regression of carotid atherosclerosis.10 Thus, the hypothesis raised by Dr Rafael that neurogenic hypertension is caused by atherosclerosis, which is considered to be the primary cause of essential hypertension, seems to lack strong and direct evidence. Further studies by cohort and prospective designs may be conducted to delineate the sequential and causal relationships between hypertension and atherosclerosis at the vascular beds of CNS.

Yuan-Teh Lee, MD, PhD
Ta-Chen Su, MD
Department of Internal Medicine
National Taiwan University Hospital

Jiann-Shing Jeng, MD
Department of Neurology
National Taiwan University Hospital

Fung-Chang Sung, PhD, MPH
College of Public Health
National Taiwan University
Taipei, Taiwan

References


Multiple Panel of Biomarkers for TIA/Stroke Evaluation

To the Editor:

Brey et al1 reported what is to their knowledge the first study to demonstrate a prospective association between sera cofactor-dependent antiscardiolipin antibodies and stroke independent of other risk factors as well as myocardial infarction (MI). In addition to lending support to basic research that has shown the pathogenicity of antiphospholipid-protein antibodies (aPL) in thrombosis,2 this well-conducted epidemiological study of Japanese-American men enrolled in the Honolulu Heart Program and followed for up to 20 years provides evidence for the role of aPL as potentially important markers and/or causes of increased vascular risk associated with ischemic stroke and MI.

It is known that stroke is a multisystemic disorder involving mechanisms of thrombotic and neurotoxic coupling.3 Biochemical markers including glutamate, homocysteine (a sulfonic analog of aspartate), and N-methyl-D-aspartate (NMDA) receptor autoantibodies (aAb) are independently associated with neurotoxicity and can be measured in blood.4 The aPLs are a part of the structural components of excitatory membranes containing glutamate receptors and may be involved in the neurotoxicity process as well.5 Consequently, the appearance of elevated levels of aPL in blood represents an additional indicator of NMDA neuroreceptor damage under ischemic conditions.

The development of a multiple panel of biomarkers for stroke analogous to that now in use for MI would be beneficial for the emergency bedside diagnosis of stroke and may help differentiate ischemic from hemorrhagic stroke. We assessed 3 proposed biomarkers: glutamate and homocysteine as correlates of large and middle artery dysfunction, and NR2A aAb as a criterion of microvascular damage independently associated with neurotoxicity and thrombosis in patients with transient ischemic attack (TIA)/stroke. We studied 92 patients with high blood pressure, prestroke, and TIA, subdivided according to symptom severity, including patients with left hemispheric stroke admitted within 6 hours of stroke onset (30.4±3.2 score on the Orgogozo Stroke Scale) and patients with intracerebral hemorrhage located in the left hemisphere (Table 1). Patients underwent neurological examination and neuroimaging (computed tomography, T2-weighted MRI, diffusion-weighted imaging, and Doppler angiography).6,7 After informed consent, blood samples were collected on the day of admission from all subjects. Plasma levels of glutamate and homocysteine and serum levels of the NMDA receptor NR2A subtype were assessed by high-performance liquid chromatography and enzyme-linked immunosorbent assay.6,8 Plasma glutamate concentrations were highest in patients with TIA (Table 1). Homocysteine levels increased in patients with...
TABLE 1. Plasma Concentrations of Glutamate and Homocysteine and Serum Concentrations of NR2A Autoantibodies in Patients and Control Subjects

<table>
<thead>
<tr>
<th>Subjects</th>
<th>n</th>
<th>Age, y</th>
<th>M</th>
<th>F</th>
<th>Glutamate*</th>
<th>Homocysteine*</th>
<th>NR2A aAb†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>30</td>
<td>51.6±4.6</td>
<td>12</td>
<td>18</td>
<td>32.0±3.8</td>
<td>8.3±0.5</td>
<td>1.4±0.3</td>
</tr>
<tr>
<td>High blood pressure</td>
<td>25</td>
<td>36.9±2.3</td>
<td>8</td>
<td>17</td>
<td>32.8±0.9</td>
<td>11.5±0.4</td>
<td>1.9±0.1</td>
</tr>
<tr>
<td>Prestroke</td>
<td>12</td>
<td>59.9±4.7</td>
<td>5</td>
<td>7</td>
<td>37.5±1.2</td>
<td>12.3±0.6</td>
<td>2.5±0.1</td>
</tr>
<tr>
<td>TIA</td>
<td>14</td>
<td>58.9±1.7</td>
<td>7</td>
<td>7</td>
<td>40.4±1.1</td>
<td>12.9±0.5</td>
<td>4.2±0.2</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>23</td>
<td>54.7±1.4</td>
<td>14</td>
<td>9</td>
<td>30.8±1.2</td>
<td>13.0±0.7</td>
<td>4.9±0.8</td>
</tr>
<tr>
<td>Hemorrhage</td>
<td>18</td>
<td>53.0±4.4</td>
<td>12</td>
<td>6</td>
<td>33.3±3.5</td>
<td>9.2±0.3</td>
<td>1.7±0.1</td>
</tr>
</tbody>
</table>

*P<0.01 compared with controls.
†P<0.001, versus control (1.4±0.3 ng/ml).
‡P<0.05 and §P<0.001 compared with controls.

Our experimental and clinical research data have demonstrated that simultaneous assessment of these 3 biomarkers allows neurotoxicity and thrombosis to be correlated with severity of cerebral ischemia and as such represents a promising additional tool for use with neuroimaging for the diagnosis of TIA/stroke. Development of a blood test that would also detect the thrombotic marker (anticardiolipin antibodies) observed by Brey et al would, when used in conjunction with our proposed biomarkers, help evaluate the thrombotic and neurotoxic contributions in stroke; guide antiplatelet, antithrombotic, and neuroprotective therapy; and assess patient follow-up and recovery after ischemic events.

Svetlana A. Dambinova, PhD, DSc
Guerman A. Khounteev, MD
Institute of the Human Brain
Russian Academy of Sciences
St. Petersburg, Russia

Alexandr A. Skorometes, MD, PhD, DSc
Department of Neurology and Neurosurgery
I.P. Pavlov’s Medical University
St. Petersburg, Russia


TABLE 2. NR2A Autoantibody Monitoring in Patients with Ischemic and Hemorrhagic Stroke

<table>
<thead>
<tr>
<th>Time, h</th>
<th>NR2A Autoantibody, ng/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ischemic Stroke*</td>
</tr>
<tr>
<td>0 (on admission)</td>
<td>5.04±0.91</td>
</tr>
<tr>
<td>3</td>
<td>4.96±0.32</td>
</tr>
<tr>
<td>6</td>
<td>5.10±0.71</td>
</tr>
<tr>
<td>9</td>
<td>7.90±1.23</td>
</tr>
<tr>
<td>12</td>
<td>7.30±1.53</td>
</tr>
<tr>
<td>24</td>
<td>3.20±0.62</td>
</tr>
<tr>
<td>72</td>
<td>3.50±0.50</td>
</tr>
</tbody>
</table>

*P<0.001, versus control (1.4±0.3 ng/ml).
Multiple Panel of Biomarkers for TIA/Stroke Evaluation
Svetlana A. Dambinova, Guerman A. Khounteev and Alexandr A. Skoromets

Stroke, 2002;33:1181-1182
doi: 10.1161/01.STR.000014922.83673.86
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2002 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/33/5/1181

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/