Endovascular Microcoil Gene Delivery Using Immobilized Anti-adenovirus Antibody for Vector Tethering

John M. Abrahams, MD; Cunxian Song, PhD; Suzanne DeFelice, BS; M. Sean Grady, MD; Scott L. Diamond, PhD; Robert J. Levy, MD

Background and Purpose—Endovascular microcoils are widely used in interventional procedures to treat cerebral aneurysms. In the present study we report for the first time successful use of an endovascular microcoil as a gene delivery system.

Methods—Anti-adenoviral monoclonal antibodies were covalently attached to the collagen-coated surface of either platinum or polyglycolic acid microcoils. These antibodies were used to tether replication-deficient adenovirus (Ad-GFP [encoding green fluorescent protein] or Ad-LacZ [encoding β-galactosidase]). Cell culture studies with rat arterial smooth muscle cells (A10) assessed transduction on or near the coil. Platinum coils coated with Ad-GFP were implanted into the ligated common carotid artery (CCA) of adult rats in a model of arterial stasis and pressurization. After 7 days, CCA segments were harvested, and coils were removed for histopathology and GFP expression studies, while organs were evaluated by polymerase chain reaction to assess viral biodistribution.

Results—In cell culture studies, GFP-positive smooth muscle cells were detected only on the platinum coil surface, while LacZ-positive cells were detected only on the polyglycolic acid coil surface, thus demonstrating localized gene delivery. After 7-day implantation, GFP (according to fluorescence microscopy and confirmed with immunohistochemistry) was detected on the harvested platinum coil and in the organizing thrombus within the CCA but not in the arterial wall. Morphometric analyses revealed that 13.3 ± 2.0% of cells within the organized thrombus were transduced with Ad-GFP via the gene delivery system. However, arterial smooth muscle cells were negative for GFP according to fluorescence microscopy and immunohistochemistry. Ad-GFP was not detectable by polymerase chain reaction in lung, liver, or kidney.

Conclusions—It is concluded that catheter deployment of platinum or biodegradable gene delivery endovascular microcoils represents an interventional device-based gene therapy system that can serve as a suitable platform for either single or multiple gene therapy vectors. (Stroke. 2002;33:1376-1382.)

Key Words: aneurysm • embolization, therapeutic • gene therapy
nant human vascular endothelial growth factor (rhVEGF) enhanced endoluminal thrombus and thus could hypotheti-
cally provide an improved outcome for coil-occluded aneu-
rysms.15 However, the delivery of recombinant proteins has a
number of limitations, including loading capacity and protein
denaturation concerns. In separate studies,16 we have dem-
onstrated that antiviral antibody can be chemically coupled onto
the surface of a collagen-coated, steel coronary stent. An
adenovirus vector was successfully delivered into coronary
arteries with highly localized gene expression from the
collagen-coated stent through a mechanism involving anti-
viral antibody tethering.16 Thus, we hypothesize that an endo-
vascular microcoil could also be used as a gene delivery
system, ultimately delivering therapeutic genes to facilitate
coil-occlusion procedures and even to treat underlying vas-
cular disease.

In this study we sought to formulate gene delivery systems
onto the surface of a GDC using immobilized anti-adenoviral
antibodies to tether the vector, thereby delivering transgenes to
modify cells in the arterial wall and invading the coil-
localized thrombus. The purpose of this investigation was to
formulate a collagen-based coating for endovascular coils
that could be used for covalently linking anti-adenoviral
antibodies. Antibody-activated coils were then investigated
for their potential to tether adenoviral gene vectors and
deliver transgenes to vascular cells, both in cell culture and in
a rat model of common carotid artery (CCA) ligation, with
coil deployment. These studies investigated both platinum
coils and a novel biodegradable polyglycolide coil as adenov-
iral vector delivery systems.

Materials and Methods

Materials

GDCs were a gift from Target Therapeutics (Freemont, Calif).
Bovine dermal type I collagen (Vitrogen 100, 3.0 mg/mL in
0.012N HCl solution) was obtained from Vitrogen Cohan-
techologies. Anti-knob mouse monoclonal F(ab)2 was provided by Selective
Genetics. A replication-defective adenovirus (type V, E1, E3 de-
leted) encoding the green fluorescent protein (Ad-GFP) under the
influence of the human cytomegalovirus promoter was purchased as a
stock solution (5 × 1012 particles per milliliter or 1 × 1015 plaque-
forming units per milliliter) from the Institute for Human Gene
Therapy of the University of Pennsylvania (Philadelphia). A type 5
adenovirus (H5.010) β-galactosidase replication-defective adenovi-
rus was also provided by the Institute for Human Gene Therapy
of the University of Pennsylvania. N-Succinimidyl-3-(2-
pyridyldithiol)-propionate (SPDP) was obtained from Pierce Chem-
ical. A rat arterial smooth muscle cell line (A10) was obtained from
American Tissue Type Collection. A nonspecific F(ab)2 fragment
of mouse anti-rat IgG was obtained from Pierce Chemical. Vectash-
field Mounting Medium for fluorescence with 4-6-diamidino-2-
phenylindole (DAPI) was purchased from Vector Laboratories, Inc.
Dimethyl sulfoxide was obtained from Fisher Chemicals. Dulbecco’s
PBS was purchased from Gibco BRL. Monoclonal anti-vimentin
(mouse IgM isotype) recognizing an epitope of the cytoskeletal
protein vimentin was obtained from Sigma. Rabbit anti-human von
Willebrand factor/horseradish peroxidase antibody was purchased
from DAKO A/S. The monoclonal mouse anti–leukocyte common
antigen, CD45, clones PD7/26 and 2B11, and the monoclonal
anti–human smooth muscle actin (mouse IgG2a isotype) antibody
were obtained from DAKO Co, as was nonimmune (nonspecific)
control IgG. The mouse monoclonal antibody to GFP 3E6 was
obtained from Molecular Probes, Inc. All were visualized with the
use of standard secondary antibody kits and DAB substrate from
Vector Labs, Inc. Dual immunohistochemistry staining used tetram-
eethylbenzidine (Kirkegaard & Perry) as a second peroxidase sub-
strate, counterstaining with nuclear fast red (Vector Labs).

Collagen Coating on Platinum and Biodegradable
Polyglycolide Coils

Under sterile conditions, GDCs and biodegradable polyglycolide
coils were sectioned into 4-mm segments. The Vitrogen 100 collagen
solution was neutralized to pH 7.4 according to the manufacturer’s
instruction. Coil segments were immersed in the neutralized type I
collagen solution (2.4 mg/mL collagen) and incubated at 37°C for 1
hour to allow for gelation and then air-dried in a sterile laminar flow
hood for 1 hour.

Platinum Coil Modification With Adenovirus

The detailed procedure for linking anti-adenovirus antibody onto
collagen coatings was described previously.16 Briefly, each collagen-
coated coil was reacted with a bifunctional cross-linker, SPDP, at a
concentration of 20 mM/L in dimethyl sulfoxide/PBS (1:3 vol/vol)
solution. After they were rinsed with copious PBS, the SPDP-acti-
 vated coils were put into a solution of 5 μg of the anti-adenovirus
knob (Fab)’2 in 100 μL PBS buffer and were incubated at room
temperature overnight. Each coil was rinsed with PBS to remove
unbound antibody. A replication-defective adenovirus (type V, E1,
E3 deleted) for expression of the green fluorescent protein (GFP)
driven by a cytomegalovirus promoter (Ad-GFP) was used as a model
vector. The antibody-bound collagen-coated coils were added to
Ad-GFP solution in PBS (1 × 108 plaque-forming units per coil
segment) and incubated at 37°C for 1 hour. Coils were not removed
from the adenovirus solution and were stored at 4°C until use. Before
use, coils were washed extensively with 1× PBS.

In Vitro Transfection With Adenovirus-Linked
Platinum Coils

Coils were incubated for 1 hour (37°C) in 6-well cell culture plates
in 2 mL of complete media containing Medium 199 (M199, Gibco
BRL), 10% fetal bovine serum (HyClone Laboratories), and 1%
penicillin-streptomycin (Gibco BRL). The medium was removed,
and 1 × 105 rat A10 smooth muscle cells in 2 mL of complete media
were added to each well and incubated at 37°C for 3 days until
confluent. Each well containing a coil was rinsed 3 times with 1×
PBS followed by the addition of 2 mL of 4% paraformaldehyde (pH
7.4) (Aldrich Chemical) for fixation. After 3 minutes of fixation,
wells were washed twice with PBS and then equilibrated in 2
mM/L MgCl2 before GFP imaging.

Biodegradable Coil Modification With Adenovirus

The collagen-coated polyglycolide coil segments, prepared as previ-
ously described,17 were reacted with the anti-knob F(ab)’2 in the
same way as described above. Since the polyglycolide material is
intensely autofluorescent, a replication-defective adenovirus (type V,
E1, E3 deleted) encoding β-galactosidase (Ad-LacZ) under the
control of the cytomegalovirus promoter (Institute for Human Gene
Therapy, University of Pennsylvania), which is suited for chromo-
genic staining, was used as a marker gene instead of GFP. The
anti-knob activated coil was incubated with the Ad-LacZ gene in 1×
PBS buffer solution (1 × 108 plaque-forming units virus per 1 mg
polyglycolide coil) at 37°C for 1 hour to permit antibody binding of
the vector. Coils were washed extensively with 1× PBS before use.

In Vitro Cell Transduction of Ad-LacZ
Tethered–Polyglycolide Coils

In vitro transfection experiments with Ad-LacZ–tethered biodegrada-
ble polyglycolide coils and with coils lacking Ad-LacZ exposure
were performed according to the following procedure. All coils were
incubated for 1 hour at 37°C in 6-well cell culture plates in 2 mL of
complete media. The medium was removed, and 1 × 105 rat A10
smooth muscle cells in 2 mL of complete media were added to each
well and incubated at 37°C for 3 days until confluent. Each well was
...
Solution was added to each well and incubated at 37° C. After the arteriotomy, and the temporary ligature has been released, the coil has been inserted into the CCA, a permanent ligature has been placed proximal to the arteriotomy, and the temporary ligature has been released.

In Vivo Transfection With Ad-GFP-Tethered Platinum Coils

All procedures were approved by the University of Pennsylvania Regulatory Affairs Committee. Sprague-Dawley rats (weight, 375 to 425 g) were given access to food and water ad libitum before anesthesia was induced by an intraperitoneal injection of 60 mg/kg sodium pentobarbital. After induction of anesthesia, the animals were kept on a heating pad and maintained at 37°C for the entire procedure and immediate recovery period. In the supine position, a right paramedian neck incision was made, exposing the CCA. The CCA was skeletonized, and then a permanent ligature was placed proximal to the CCA bifurcation, while a temporary ligature was placed 1 cm distal to the origin of the CCA (Figure 1A). After proximal control of the CCA was obtained with the temporary ligature, a small arteriotomy was made 2 mm proximal to the distal ligation. The coil segment coated with Ad-GFP was then inserted into the CCA, and a new ligation was placed just distal to the arteriotomy to exclude it from the circulation (Figure 1B). The temporary ligature was released to reestablish blood flow in the carotid segment. The operative field was inspected to ensure that the final ligature maintained hemostasis and that the coil was secure in the arterial luminal spaces of the CCA. The retrieved coils were examined in a fresh state for the presence of GFP fluorescence. Light microscopy studies used hematoxylin-eosin staining for general morphology and immunoperoxidase staining for detection of white blood cells (leukocyte common antigen), endothelial cells (von Willebrand factor), and fibroblasts (vimentin); the same immunohistochemistry techniques were used to confirm GFP expression. Briefer, sections were protein blocked with 10% normal horse serum (Vector) and then incubated overnight at 4°C with primary antibody. The following day, sections were incubated with anti-mouse biotinylated secondary antibody from the Vectastain Elite ABC kit (Vector). Vectastain avidin-biotin complex (Vector) was used to react with 3,3'-diaminobenzidine (DAB) peroxidase-substrate (Vector) to produce a brown antigen staining. Immunohistochemistry studies were used to confirm expression of GFP by leukocytes. Frozen sections were fixed with acetone. This was followed by a brief blocking with 10% normal horse serum and incubation with the first primary antibody for GFP. Incubation with a rat-adsorbed anti-mouse biotinylated secondary antibody (Vector) was followed by fluorescein avidin D (Vector) and then applied to the sections for 30 minutes. An avidin/biotin blocking kit (Vector) was used between primary antibody applications to prevent nonspecific binding. Sections were blocked again and then incubated in the second primary antibody, leukocyte common antigen, for 1 hour at 37°C. This was followed by application of the anti-mouse biotinylated secondary antibody. Sections were then treated with Texas Red Avidin D (Vector) for 30 minutes. Fluorescent mounting medium with DAPI was used for visualization of the cell nuclei. For fluorescence observations, frozen sections were fixed with 4% paraformaldehyde and mounted with DAPI for nuclei staining. GFP autofluorescence was quenched by a brief incubation in a 0.1% solution of Evan’s Blue (J.T. Baker) and sodium borohydride (Aldrich) before cover slip placement. Microscopic pictures were taken on a Nikon Eclipse E800 epifluorescence microscope (Nikon Inc.) equipped with SPOT version 3.02 software (SPOT Diagnostic Instruments) with the use of both fluorescein isothiocyanate (FITC) and DAPI filters. The number of GFP-expressing cells was determined by visual count in the arterial luminal spaces of ×200 fields. Cell counts were performed by a single experienced observer, counting 3 fields in 3 separate sections for each artery. The total number of luminal cells counted per field was 231±38. Data were expressed as mean±SEM. The total number of cells in the same region was counted per DAPI-positive nuclei with the use of the nuclear counting macro of NIH Image version 1.62.

Polymerase Chain Reaction Studies of Biodistribution

Samples of tissues harvested for polymerase chain reaction (PCR) analyses were immediately frozen in liquid nitrogen. Phenol/chloroform DNA extraction was performed, and PCR amplification was performed over 35 cycles with the use of GFP-specific primers (upstream: 5'-GGC TGC TGC AAA ACA GAT AC-3'; downstream: 5'-CGG ATC CTC TAG AGT CGA C-3'). Amplified samples were analyzed with agarose gel electrophoresis with the use of appropriate standards, Ad-GFP, and a positive control.

Vessel and Coil Harvest

Animals were given access to food and water ad libitum, and then the coils were harvested from the CCA. Anesthesia was induced by an intraperitoneal injection of 60 mg/kg sodium pentobarbital, and the animals were killed by an intracardiac injection of 60 mg/kg sodium pentobarbital. The previous incision was opened, and the CCA was exposed. The segment of CCA containing the coil was removed. The section of CCA, approximately 10 mm in length, was sectioned in half with microscissors, and the coil was carefully removed. The coil and CCA segments were placed into 1× PBS.
and localized transduction of the cells growing on the coil surface occurred (Figure 2A). There was no cell-associated fluorescence on the unmodified platinum coil (Figure 2B). The underlying A10 cells growing on the bottom of the well displayed essentially no transduction in comparison to the widespread, uniform, and highly localized transduction observed with the cells growing on the coil surface, demonstrating a marked localization of transduction at the surface of the coil.

Biodegradable Coils In Vitro
When Ad-LacZ–linked, collagen-coated polyglycolide coils were cultured with rat A10 cells, transduction of cells was noted on 4 of 4 polyglycolide coils tested, as indicated by the blue cell-localized staining on their coil surface (Figure 3A). Additionally, there is evidence of a positive transduction on the surface of the biodegradable polyglycolide coil itself as well as within the collagen coating (Figure 3B). No X-gal staining was noted on other cells growing in the plate, nor was there positive staining in cultures with the use of biodegradable polyglycolide coils without tethered adenovirus (Figure 3C). There was qualitatively less transduction noted with the polyglycolide coil compared with the platinum coil (GFP results), perhaps because of differences in local chemistry at the site of the hydrolyzing polyglycolic acid or differences in reporter sensitivity.

In Vivo Coil-Based Gene Delivery
A total of 6 arterial segments with GDCs plus collagen/Ad-GFP were harvested. Coils were implanted for 7 days to obtain GFP expression at its peak. In other studies with platinum coils alone,15 most changes in the histology, such as wall thickening, occur within 1 week, with less subsequent change in the following week. Harvested platinum microcoils were easily removed from the vessel and were seen by gross inspection to have minimal fibrotic encapsulation of the coil after 1 week of implantation.

Coil segments removed from the CCA were evaluated for transduction activity on the coil surface. CCA segments were sectioned and evaluated with DAPI staining for the cell nuclei and green fluorescence for GFP transduction (Figure 4). These segments showed widespread transduction within the intraluminal organized thrombus but not within the arterial wall (Figure 4A and 4B). Morphometric analyses revealed that 13.3±2.0% of cells within the organized thrombus were transduced with Ad-GFP via the gene delivery system; GFP

Figure 2. Site-specific Ad-GFP transduction using collagen-coated GDC with tethered vectors in cell culture (rat arterial smooth muscle, A10) demonstrated GFP-expressing cells exclusively on the coil segment and not in the culture. A, Positive transduction in vitro using collagen-coated platinum coils with tethered Ad-GFP (fluorescence micrograph, FITC filter). B, Negative control coil without modification.

Figure 3. Positive transduction with biodegradable polyglycolide coil delivery of antibody-tethered Ad-LacZ onto the surface. A, Positive transduction (X-gal staining) on the surface of biodegradable polyglycolide coil itself and in the collagen coating. B, High-power view of positive transduction on the surface of the biodegradable polyglycolide coil. C, Control coil (no Ad-GFP) incubated with A10 cells and stained with X-gal (as above) showing no positive cells.
transduction was confirmed with immunohistochemistry (Figure 4C). The hematoxylin-eosin staining morphology demonstrated intraluminal organized thrombus (results not shown), with white blood cell invasion as confirmed by positive leukocyte common antigen staining (Figure 4E). Virtually all of the transduced cells were leukocytes (Figure 4E). There was no evidence of smooth muscle cell or endothelial cell transduction according to comparisons of fluorescence micrographs with serial hematoxylin-eosin cross sections and immunohistochemistry. Furthermore, there was no evidence of endothelialization of thrombi or fibroblast invasion in these 1-week explants according to immunohistochemistry studies (data not shown). Examination of explanted coils from the rats after 7 days demonstrated GFP-positive cells adherent to the coil surface (Figure 5), consistent with the cell culture results.

Bioavailability

Vector biodistribution was assessed with PCR studies of distal organs. Representative lung, liver, and kidney samples were evaluated from each animal by PCR analyses. There were no detectable GFP DNA sequences found after 35 cycles in any of the tissues sampled. This indicated that the virus biodistribution was localized to the site of deployment of the endovascular microcoil gene delivery system.

Discussion

These investigations are the first report of the incorporation of a gene delivery system onto the surface of an endovascular coil. Adenovirus was successfully tethered with antiviral antibody onto the surface of platinum microcoils with efficient gene delivery both in vitro and in vivo. The in vitro results showed that the antibody was capable of localizing the adenovirus to the surface of the platinum coil. Rat arterial smooth muscle cells (A10) were used as a convenient model system to investigate site-specific transduction via antibody-tethered adenovirus immobilized on a GDC. Ideally, transduction of leukocytes invading a model thrombus would have better represented a simulation of the in vivo environment; however, this was not practical. Nevertheless, the A10 cell cultures proved useful for initial studies of GDC-based adenovirus delivery. This was extrapolated to an in vivo model and again showed positive transduction from the platinum coil expressed in the cellular material found within the CCA. There was virtually no GFP transduction noted in the arterial wall; GFP expression was only noted in the cells of the organizing thrombus and the adjacent arterial endothelium. These results are consistent with the PCR data demonstrating no downstream vector DNA and overall confirm the site specificity and tight localization of antibody-tethered vectors. Moreover, we investigated in vitro coupling of adenovirus to a completely biodegradable coil, which may have therapeutic advantages for promoting long-term aneurysm stabilization without the persistence of a metal implant.

The mechanism of vector delivery in these GDC studies very likely involves processing of the intact adenovirus-antibody complex, with eventual detachment of the vector from the immunoglobulin at some time before gene expression. Previous research from our group has demonstrated in cell culture studies that antibody-tethered adenovirus is predominantly taken up by cells as an intact antibody-vector complex, with exclusion of antibody after 24 hours. Thus, cellular interactions must be involved in breaking down either the collagen matrix or the poly(D,L-lactic-co-glycolic acid)
Figure 5. Representative platinum microcoils with antibody-tethered GFP adenoviral delivery system, retrieved from different rats after 7 days of implantation, removed from CCA segment, show tissue ingrowth and GFP-positive transduction throughout the coils (fluorescence micrograph, FITC filter).

(PLGA) to permit antibody detachment and cellular internalization. Furthermore, the absence of systemic distribution of vector in the rat studies, at the detection limits of PCR, also supports the view that the high degree of site specificity noted is due to local processing of covalently bound antibody, with tethered vector, rather than dissociation of vector from the antibody. A comparable result was seen in our pig coronary stent studies,16 in which we used Ad-GFP that was antibody tethered onto collagen-coated stents. Retrieval analyses in these coronary studies demonstrated GFP expression only in coronary sites in contact with stents, with no downstream coronary or distal organ expression. In the present studies our animal model is based on a blind-ended, high-pressure, arterial sac, which is quite different from the pathophysiological environment of the coronary artery after stenting. The objective of endovascular coil gene therapy is vascular occlusion of the target structure as opposed to vessel patency with coronary artery stent modifications. Thus, the implications of this work represent a whole new treatment armamentarium for cerebrovascular disease and perhaps even intracranial neoplasms.

Although a large number of intracranial aneurysms are currently treated with endovascular coil occlusion, little is known in terms of long-term effectiveness with respect to complete occlusion. In fact, there have only been anecdotal reports of a mere 26 aneurysms, which is a considerably small number of reported necropsy findings compared with the 10,000 to 15,000 aneurysms that have been coiled to date worldwide.6,18–23 There have been 6 human case reports of 8 aneurysms,18–23 and the largest single series has reported 18 aneurysms6 with documented histopathological results after GDC therapy. Overall, there was evidence of a thin membrane over the neck of the ostium of the aneurysm as early as 3 to 7 days and fibrous tissue as early as 1 month; endothelium covering the neck was not observed until 12 months. However, the absolute presence of peripheral fibrosis does not determine whether there is endothelium over the ostium, which is a necessity for complete aneurysm obliteration. Biologically active coils with gene or protein delivery capability can play a significant role in improving occlusion rates.

Previous experimental studies of models of intracranial aneurysms typically focused on the use of venous sidewall aneurysms of the CCA in which a segment of jugular vein was used.12 These models are very costly, are difficult to establish, and use venous rather than arterial vessels for the aneurysm itself. Thus, our approach was to focus on evaluating arterial pathobiology in response to gene therapy with the use of a simpler rat model based on a blind-ended arterial sac. Thus, our rat studies attempted only to create a model of thrombosis/stasis to mimic the desired outcome of coil occlusion. In addition, this was considered appropriate in this paper of concept with the goal of using larger animals with sidewall jugular aneurysms for the next phase of experimentation. Prior investigations have used in vitro and in vivo models to investigate surface modification of GDCs with extracellular matrix proteins,8,10,14,24,25 nonbiodegradable polymers,12,26 ionizing radiation,13 and coating of the coils with immortalized fibroblasts that secrete growth factors.10,11

Previous studies performed by our group demonstrated that rhVEGF added to the surface of GDCs would promote angiogenesis necessary to provide a biological scaffolding for subsequent fibrosis, especially in larger aneurysms. Using the same rat model as in this study, we evaluated CCA segments with unmodified GDC, GDC plus collagen, and GDC plus collagen/rhVEGF. Our results showed that those CCA segments with GDC plus collagen/rhVEGF had significantly more occlusive tissue with an overall enhanced vascular response.15 Although these results were very promising, we further postulated that for improved aneurysm stabilization, platinum could be replaced with a thrombogenic and biodegradable polymer such as polyglycolide. Compared with GDC alone, our biodegradable coil showed a significantly enhanced vascular response.17 Thus, we speculate that combining gene therapy with endovascular technology would serve as a very novel method of providing a multitude of therapeutic modifications to platinum and biodegradable microcoils. Adenovirus exhibits high gene transfer efficiency compared with other vectors and has been used extensively in cardiovascular gene therapy.27–32 In particular, it has been used with animal models to prevent...
restenosis after balloon-induced arterial injury, vein graft intimal hyperplasia, arterial thrombosis, and transplantation vasculopathy.33 Current methods of adenoviral delivery include direct injection (either intravenous, intra-arterial, or intramuscular), the use of balloon catheter surface, or the use of biodegradable microspheres. Gene transfer efficiency and its subsequent therapeutic effect are crucial to these methods, as well as precise control of dose and biodistribution. In addition, adenoviral-mediated growth factors would possibly allow for continued release mechanisms compared with purely recombinant growth factors.

Conclusion
This is the first demonstration an endovascular microcoil that also functions as a gene delivery system. The next generation of coil technology emerges to incorporate a host of growth factors for aneurysm occlusion across those with larger domes and wider necks. Catheter deployment of gene delivery endovascular microcoils represents an interventional device–based gene delivery system that can serve as a suitable platform for either single or multiple gene therapy vectors. This approach has potential applications for improved treatment of intracranial aneurysms, arteriovenous malformations, and site-specific gene administration for end-organ therapy.

Acknowledgments
The authors thank Jennifer LeBold and Jeanne Connolly for their assistance in preparing the manuscript. This research was supported in part by National Institutes of Health grants HL41663 (Dr Levy) and HL64388 (Dr Diamond and Dr Levy), a grant from the Cystic Fibrosis Foundation, and the William J. Rashkind Endowment of the Children’s Hospital of Philadelphia (Dr Levy).

References
Endovascular Microcoil Gene Delivery Using Immobilized Anti-adenovirus Antibody for Vector Tethering

John M. Abrahams, Cunxian Song, Suzanne DeFelice, M. Sean Grady, Scott L. Diamond and Robert J. Levy

Stroke. 2002;33:1376-1382
doi: 10.1161/01.STR.000014327.03964.C0

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2002 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/33/5/1376

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/