Physical Activity and Stroke Risk
A Meta-Analysis

Chong Do Lee, EdD; Aaron R. Folsom, MD; Steven N. Blair, PED

Background and Purpose—Whether physical activity reduces stroke risk remains controversial. We used a meta-analysis to examine the overall association between physical activity or cardiorespiratory fitness and stroke incidence or mortality.

Methods—We searched MEDLINE from 1966 to 2002 and identified 23 studies (18 cohort and 5 case-control) that met inclusion criteria. We estimated the overall relative risk (RR) of stroke incidence or mortality for highly and moderately active individuals versus individuals with low levels of activity using the general variance–based method.

Results—The meta-analysis documented that there was a reduction in stroke risk for active or fit individuals compared with inactive or unfit persons in cohort, case-control, and both study types combined. For cohort studies, highly active individuals had a 25% lower risk of stroke incidence or mortality (RR = 0.75; 95% CI, 0.69 to 0.82) compared with low-active individuals. For case-control studies, highly active individuals had a 64% lower risk of stroke incidence (RR = 0.36; 95% CI, 0.25 to 0.52) than their low-active counterparts. When we combined both the cohort and case-control studies, highly active individuals had a 27% lower risk of stroke incidence or mortality (RR = 0.73; 95% CI, 0.67 to 0.79) than did low-active individuals. We observed similar results in moderately active individuals compared with inactive persons (RRs were 0.83 for cohort, 0.52 for case-control, and 0.80 for both combined). Furthermore, moderately and highly active individuals had lower risk of both ischemic and hemorrhagic strokes than low-active individuals.

Conclusions—We conclude that moderate and high levels of physical activity are associated with reduced risk of total, ischemic, and hemorrhagic strokes. (Stroke. 2003;34:2475-2482.)

Key Words: incidence • meta-analysis • mortality • physical activity • stroke

Stroke is a leading cause of death and long-term disability in the United States. Approximately one half million US adults suffer from stroke (first attack) each year, with 100,000 recurrent attacks. Of these, 160,000 are fatal. Since effective treatments for stroke are limited and many stroke survivors require lengthy rehabilitation and chronic care, primary prevention of stroke is imperative to avoid the burden of this disease.

Hypertension and cardiac disease are the primary risk factors for stroke. Physical activity may modify these risk factors for stroke and may have more direct effects to lower stroke risk as well. A systematic review reported that physical activity is inversely associated with incidence of hypertension and coronary heart disease. However, whether physical activity alters stroke risk was less clear, partly because there were fewer stroke events in some studies. Some investigators found an inverse association between physical activity and stroke risk. Other studies have shown a U-shaped association, no association, or a positive association between physical activity and stroke incidence or mortality.

Materials and Methods

Study Selection
We searched MEDLINE from January 1966 through July 2002, using the medical subject headings physical activity, exercise, leisure-time activity, stroke, and cardiovascular disease. We also searched the Surgeon General’s report on physical activity and health. We reviewed all relevant articles and identified 31 published epidemiological studies of physical activity and stroke, 23 of which (18 cohort and 5 case-control) met our inclusion criteria. Inclusion criteria were English language reports of any cohort or case-control study in which physical activity (leisure-time activity) or cardiorespiratory fitness was classified as low, moderate, or high or was classified as the least to the highest intensity of physical activity. We excluded 8 studies from the
TABLE 1. Characteristics of 18 Cohort Studies of Physical Activity and the Risk of Stroke Incidence or Mortality

<table>
<thead>
<tr>
<th>Study (Reference)</th>
<th>Year</th>
<th>Study Population</th>
<th>Exposure</th>
<th>Follow-Up (Y)</th>
<th>Outcome (No. of Events)</th>
<th>Covariates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lee and Blair22</td>
<td>2002</td>
<td>Aerobics Center Longitudinal Study (16 878 US men; age, 40–87 y)</td>
<td>Low fitness</td>
<td>10</td>
<td>Stroke deaths (n=32)</td>
<td>Age, examination year, smoking, alcohol intake, BMI, hypertension, diabetes, and parental history of coronary heart disease</td>
</tr>
<tr>
<td>Ellekjaer et al15</td>
<td>2000</td>
<td>Nord-Trondelag Survey (14 101 Norwegian women; age ≥50 y)</td>
<td>Low activity</td>
<td>10</td>
<td>Stroke deaths (n=457)</td>
<td>Age, smoking, diabetes, BMI, antihypertensive medication, systolic blood pressure, angina pectoris, MI, illness, and education</td>
</tr>
<tr>
<td>Hu et al11</td>
<td>2000</td>
<td>Nurses’ Health Study (72 488 US women; age, 40–65 y)</td>
<td>Low activity</td>
<td>8</td>
<td>Stroke incidence (n=407)</td>
<td>Age, time, cigarette smoking, BMI, menopausal status, parental history of MI before age 60 years, alcohol intake, aspirin use, history of hypertension, diabetes, and hypercholesterolemia</td>
</tr>
<tr>
<td>Lee et al24</td>
<td>1999</td>
<td>Physicians’ Health Study (21 823 US men; age, 40–64 y)</td>
<td>Low intensity</td>
<td>11.1</td>
<td>Stroke deaths (n=533)</td>
<td>Age, treatment assignment, cigarette smoking, alcohol intake, history of angina, parental history of MI at <60 years, BMI, history of hypertension, high cholesterol, and diabetes mellitus</td>
</tr>
<tr>
<td>Aagnarsson et al7</td>
<td>1999</td>
<td>Reykjavik Study (4484 Icelandic men; age, 45–80 y)</td>
<td>Low intensity</td>
<td>10.6</td>
<td>Stroke incidence (n=249)</td>
<td>Age, blood glucose, smoking, hypertension, and ventilatory function</td>
</tr>
<tr>
<td>Evenson et al19</td>
<td>1999</td>
<td>ARIC Study (8279 US men and 8296 US women; age, 45–64 y)</td>
<td>Low activity</td>
<td>7.2</td>
<td>Stroke incidence (n=189)</td>
<td>Age, sex, race-center, education, and smoking</td>
</tr>
<tr>
<td>Bijnen et al8</td>
<td>1998</td>
<td>Zutphen Elderly Study (802 Dutch men; age, 64–84 y)</td>
<td>Low activity</td>
<td>10</td>
<td>Stroke deaths (n=47)</td>
<td>Age, baseline stroke, smoking, and alcohol consumption</td>
</tr>
<tr>
<td>Lee and Paffenbarger22</td>
<td>1998</td>
<td>Harvard Alumni Study (11 130 men; age, 43–86 y)</td>
<td>Low intensity</td>
<td>...</td>
<td>Stroke deaths (n=378)</td>
<td>Age, smoking, alcohol intake, and early parental death</td>
</tr>
<tr>
<td>Nakayama et al23</td>
<td>1997</td>
<td>Shibata Study (961 Japanese men and 1341 women; age ≥40 y)</td>
<td>Light activity</td>
<td>15.5</td>
<td>Stroke incidence (n=141)</td>
<td>Age</td>
</tr>
<tr>
<td>Gillum et al13</td>
<td>1996</td>
<td>NHANES I Follow-up Study (7895 white and black men and women; age, 45–74 y)</td>
<td>Low activity</td>
<td>11.6</td>
<td>Stroke incidence (n=623)</td>
<td>Age, smoking, history of diabetes, history of heart disease, education, systolic blood pressure, total cholesterol, BMI, and hemoglobin</td>
</tr>
<tr>
<td>Abbott et al6</td>
<td>1994</td>
<td>Honolulu Heart Program (7530 men, Japanese ancestry; age, 45–68 y)</td>
<td>Inactivity</td>
<td>22</td>
<td>Stroke incidence (n=537)</td>
<td>Age</td>
</tr>
<tr>
<td>Kiely et al17</td>
<td>1994</td>
<td>Framingham Study (1897 US men and 2239 US women, age, 26–62 y)</td>
<td>Low activity</td>
<td>32</td>
<td>Stroke incidence (n=427)</td>
<td>Age, systolic blood pressure, cholesterol, smoking, vital capacity, BMI, left ventricular hypertrophy, atrial fibrillation, valvular disease, history of congestive heart failure, history of ischemic heart disease, and occupation</td>
</tr>
<tr>
<td>Simmonsick et al27</td>
<td>1993</td>
<td>Epidemiologic Studies of the Elderly (4840 US men and women; age ≥65 y)</td>
<td>Inactivity</td>
<td>6</td>
<td>Stroke incidence (n=7)</td>
<td>Age, sex, education, work status, smoking, respiratory symptoms, MI, diabetes, angina, self-rated health, and modified depression score</td>
</tr>
<tr>
<td>Haheim et al14</td>
<td>1993</td>
<td>Oslo Study (14 403 Norwegian men; age, 40–49 y)</td>
<td>Sedentary</td>
<td>12</td>
<td>Stroke incidence (n=81)</td>
<td>None</td>
</tr>
<tr>
<td>Wannamethee and Shaper15</td>
<td>1992</td>
<td>British Regional Heart Study (7735 British men; age, 40–59)</td>
<td>Inactivity</td>
<td>9.5</td>
<td>Stroke incidence (n=128)</td>
<td>Age, social class, smoking, heavy drinking, and BMI</td>
</tr>
<tr>
<td>Lindsted et al11</td>
<td>1991</td>
<td>Seventh-Day Adventist (8464 men; age ≥30 y)</td>
<td>Low activity</td>
<td>26</td>
<td>Stroke deaths (n=410)</td>
<td>Race, smoking, education, medical illness, BMI, marital status, and dietary pattern</td>
</tr>
<tr>
<td>Folsom et al10</td>
<td>1990</td>
<td>Iowa Women’s Health Study (41 837 Iowa women; age, 55–69 y)</td>
<td>Low activity</td>
<td>2</td>
<td>Stroke incidence (n=218)</td>
<td>Age</td>
</tr>
<tr>
<td>Menotti and Secchereccia24</td>
<td>1985</td>
<td>Italian Railroad Worker (89 029 men; age, 40–59)</td>
<td>Sedentary</td>
<td>5</td>
<td>Stroke deaths (n=187)</td>
<td>Age</td>
</tr>
</tbody>
</table>

BMI indicates body mass index; MI, myocardial infarction.

analysis. Four studies either classified or analyzed physical activity only as low versus other30–32; 2 studies analyzed physical activity on a continuous scale34,35; and 2 studies reported death rates or relative risks (RRs) without CIs, and therefore the variances of the RRs were inestimable.36,37

Data Extraction

All the data were independently abstracted by 1 investigator (C.D.L.). Measures of association reported within a single study obtained 23 studies that met inclusion criteria, yielding a total of 31 data units. The studies’ characteristics were recorded as follows: author’s name, publication year, study population (sample size, age, sex, and ethnicity), physical activity classification (low, moderate, high activity intensities), activity type (leisure-time only), follow-up years (cohort studies), outcome measure (stroke incidence or mortality), RR (or odds ratio) and CI, and covariates.

Statistical Analysis

The RR or odds ratio was used to estimate the risk ratio of stroke incidence or mortality for moderately or highly active individuals used 2 data units with different age groups (aged 45 to 54 and 55 to 68 years).6 For the Framingham Study, we separated 2 data units (men and women).12 In the Established Populations for Epidemicologic Studies of the US Elderly, we included 3 data units: Boston (Mass) elderly, New Haven (Conn) elderly, and Iowa elderly.21 We obtained 23 studies that met inclusion criteria, yielding a total of 31 data units. The studies’ characteristics were recorded as follows: author’s name, publication year, study population (sample size, age, sex, and ethnicity), physical activity classification (low, moderate, high activity intensities), activity type (leisure-time only), follow-up years (cohort studies), outcome measure (stroke incidence or mortality), RR (or odds ratio) and CI, and covariates.

Statistical Analysis

The RR or odds ratio was used to estimate the risk ratio of stroke incidence or mortality for moderately or highly active individuals...
versus low-active individuals. We used the general variance–based
fixed effects model to analyze the cohort and case-control studies
separately and then combined both study types. 38 We transformed
each study’s RR to natural logarithms to stabilize the variances. The

\[
RR = \exp \left(\frac{\sum w_i \ln(\text{RR}_i)}{\sum w_i} \right)
\]

where \(w_i \) is a weight for the study, which is the inverse of the
variance for the study. We tested homogeneity of the associ-
ation across studies using Woolf’s \(\chi^2 \) statistic. 39 We also
tested for publication bias using a funnel plot of the sample
sizes versus RRs and with the Kendall rank correlation
method. All statistical analyses were performed with the use
of STATA statistical software (Stata Corporation).

Results

Eleven of the 18 cohort studies (Table 1) were from the
United States, and 7 studies were from elsewhere, such as
England, Norway, Iceland, Japan, Italy, or the Netherlands.
One of the 5 case-control studies (Table 2) was from the
United States (New York), and the other 4 were from
England, Australia, and the Netherlands. A funnel plot
(sample sizes versus RRs) and the Kendall \(\tau \) rank correlation
coefficient (\(r = 0.13 \)) suggested that there was no publication
bias in the sample of reports (\(P = 0.30 \)). Associations were

TABLE 2. Characteristics of 5 Case-Control Studies of Physical Activity and the Risk of Stroke Incidence

<table>
<thead>
<tr>
<th>Study Design</th>
<th>Authors (Year)</th>
<th>Case Patients</th>
<th>Controls</th>
<th>Exposure</th>
<th>Covariates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohort studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sacco et al 37</td>
<td>1998 Northern Manhattan Stroke Study (163 men and 206 women with first cerebral infarction; age ≥39 y)</td>
<td>678 community population</td>
<td>Light activity</td>
<td>Hypertension, diabetes, cardiac disease, smoking, alcohol use, obesity, education, and season</td>
<td></td>
</tr>
<tr>
<td>You et al 30</td>
<td>1997 Melbourne Risk Factor Study (201 Australian men and women with cerebral infarction; age, 15–55 y)</td>
<td>201 community-based control subjects</td>
<td>Inactivity</td>
<td>Age, sex, smoking, hypertension, high cholesterol, heart disease, diabetes mellitus, alcohol intake, and oral contraceptive use</td>
<td></td>
</tr>
<tr>
<td>You et al 31</td>
<td>1995 203 Australian men and women with lacunar infarction; age, 20–85 y</td>
<td>203 community-based control subjects</td>
<td>Inactivity</td>
<td>Age, sex, hypertension, high cholesterol, heart disease, diabetes mellitus, alcohol intake, oral contraceptive use, and smoking</td>
<td></td>
</tr>
<tr>
<td>Shinton and Sagar 32</td>
<td>1993 English men and women (65 patients with first stroke; age, 35–74 y)</td>
<td>169 randomly selected general population</td>
<td>Inactivity</td>
<td>Age and sex</td>
<td></td>
</tr>
<tr>
<td>Herman et al 33</td>
<td>1983 132 Dutch men and women with stroke; age, 40–74 y</td>
<td>239 patients in the same hospital</td>
<td>Low activity</td>
<td>Age, sex, education, acute myocardial infarction, cardiac arrhythmias, high blood pressure, diabetes mellitus, obesity, transient ischemic attack, and rheus factor</td>
<td></td>
</tr>
<tr>
<td>Case-control studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sacco et al 37</td>
<td>1998 Northern Manhattan Stroke Study (163 men and 206 women with first cerebral infarction; age ≥39 y)</td>
<td>678 community population</td>
<td>Light activity</td>
<td>Hypertension, diabetes, cardiac disease, smoking, alcohol use, obesity, education, and season</td>
<td></td>
</tr>
<tr>
<td>You et al 30</td>
<td>1997 Melbourne Risk Factor Study (201 Australian men and women with cerebral infarction; age, 15–55 y)</td>
<td>201 community-based control subjects</td>
<td>Inactivity</td>
<td>Age, sex, smoking, hypertension, high cholesterol, heart disease, diabetes mellitus, alcohol intake, and oral contraceptive use</td>
<td></td>
</tr>
<tr>
<td>You et al 31</td>
<td>1995 203 Australian men and women with lacunar infarction; age, 20–85 y</td>
<td>203 community-based control subjects</td>
<td>Inactivity</td>
<td>Age, sex, hypertension, high cholesterol, heart disease, diabetes mellitus, alcohol intake, oral contraceptive use, and smoking</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. RRs of stroke incidence or mortality for highly active individuals vs low-active individuals in 18 epidemiological cohort studies. Error bars represent 95% CIs for each RR (*adjusted for age only; †adjusted for age and some risk factors excluding high blood pressure; ††adjusted for age and major risk factors including high blood pressure). A RR < 1.0 indicates that greater physical activity levels may decrease the risk of stroke incidence or mortality.

Figure 2. RRs of stroke incidence for highly active individuals vs low-active individuals in 5 epidemiological case-control studies. Error bars represent 95% CIs for each RR (†adjusted for age and some risk factors excluding high blood pressure; ††adjusted for age and major risk factors including high blood pressure). A RR < 1.0 indicates that greater physical activity levels may decrease the risk of stroke incidence.
Table 3. Overall Relative Risks of Stroke Incidence or Mortality for Highly and Moderately Active Individuals Versus Low-Active Individuals

<table>
<thead>
<tr>
<th>Activity Comparison</th>
<th>Stroke Type</th>
<th>No. of Studies</th>
<th>Data Units</th>
<th>Relative Risk (95% CI)</th>
<th>P Value</th>
<th>P for Homogeneity Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low, High</td>
<td>Total</td>
<td>18</td>
<td>26</td>
<td>0.75 (0.69, 0.82)</td>
<td><0.001</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>5</td>
<td>5</td>
<td>0.36 (0.25, 0.52)</td>
<td>0.04</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>23</td>
<td>31</td>
<td>0.73 (0.67, 0.79)</td>
<td><0.001</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>Ischemic</td>
<td>6</td>
<td>11</td>
<td>0.79 (0.69, 0.91)</td>
<td><0.001</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>Hemorrhagic</td>
<td>3</td>
<td>4</td>
<td>0.66 (0.48, 0.91)</td>
<td><0.001</td>
<td>0.49</td>
</tr>
<tr>
<td>Low, Moderate</td>
<td>Total</td>
<td>15</td>
<td>23</td>
<td>0.83 (0.76, 0.89)</td>
<td><0.001</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>4</td>
<td>4</td>
<td>0.52 (0.40, 0.69)</td>
<td><0.001</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>19</td>
<td>27</td>
<td>0.80 (0.74, 0.86)</td>
<td><0.001</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>Ischemic</td>
<td>4</td>
<td>9</td>
<td>0.91 (0.80, 1.05)</td>
<td><0.001</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>Hemorrhagic</td>
<td>3</td>
<td>4</td>
<td>0.85 (0.64, 1.13)</td>
<td><0.001</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Figure 3. Overall RRs of ischemic stroke incidence or mortality for highly and moderately active individuals vs low-active individuals. Error bars represent 95% CIs for each RR (*adjusted for age only; †adjusted for age and some risk factors excluding high blood pressure; ††adjusted for age and major risk factors including high blood pressure). A RR < 1.0 indicates that greater physical activity levels may decrease the risk of ischemic stroke incidence or mortality.
homogeneous within cohort (P=0.80) and case-control (P=0.96) study groups and across all studies (P=0.81).

Figure 1 shows the RRs (and 95% CIs) of stroke incidence or mortality for highly active individuals versus low-active individuals in the cohort studies. The CIs for the RRs of many studies included 1.0. The RRs were <1.0 in 14 studies, but 4 studies had RRs >1.0. Overall, highly active individuals had a 25% lower risk of stroke incidence or mortality in the cohort studies than did low-active individuals (RR=0.75; 95% CI, 0.69 to 0.82; P<0.001). For case-control studies, highly active individuals had a 64% lower risk of stroke incidence than did low-active individuals (RR=0.36; 95% CI, 0.25 to 0.52; P<0.001) (Figure 2). When the cohort and case-control studies were combined, highly active individuals had a 27% lower risk of stroke incidence or mortality than did low-active individuals (RR=0.73; 95% CI, 0.67 to 0.79; P<0.001) (Table 3). We observed similar results across subtypes of stroke on the basis of 6 ischemic and 3 hemorrhagic stroke studies. Highly active individuals had a 21% lower risk of incident ischemic stroke (RR=0.79; 95% CI, 0.69 to 0.91; P<0.001) and a 34% lower risk of incident hemorrhagic stroke (RR=0.66; 95% CI, 0.48 to 0.91; P<0.001) compared with low-active individuals (Figures 3 and 4).

Table 3 also shows the RRs of stroke incidence or mortality for moderately active individuals versus low-active individuals. In cohort studies, moderately active individuals had a 17% lower risk of stroke incidence or mortality than did low-active individuals (RR=0.83; 95% CI, 0.76 to 0.89; P<0.001). For case-control studies, moderately active individuals had a 48% lower risk of stroke incidence compared with low-active individuals (RR=0.52; 95% CI=0.40 to 0.69; P<0.001). Overall, when the cohort and case-control studies were combined, moderately active individuals had a 20% lower risk of stroke incidence or mortality than did low-active individuals (RR=0.80; 95% CI, 0.74 to 0.86; P<0.001). Moderately active individuals also had a 9% lower risk of incident ischemic stroke (RR=0.91; 95% CI, 0.80 to 1.05; P<0.001) and a 15% lower risk of incident hemorrhagic stroke (RR=0.85; 95% CI, 0.64 to 1.13; P<0.001) than did low-active individuals (Figures 3 and 4).

Figure 4. Overall RRs of hemorrhagic stroke incidence or mortality for highly and moderately active individuals vs low-active individuals. Error bars represent 95% CIs for each RR (adjusted for age only; †† adjusted for age and major risk factors including high blood pressure). A RR <1.0 indicates that greater physical activity levels may decrease the risk of hemorrhagic stroke incidence or mortality.

Discussion

We investigated the association of physical activity with stroke risk by a meta-analysis of existing epidemiological studies. The value of meta-analysis is illustrated by the fact that most studies individually lacked precision, a problem alleviated by pooling. The major finding was that moderately or highly active individuals had a 20% lower risk of stroke incidence or mortality than did low-active individuals. Overall, moderately active individuals had a 20% lower risk and highly active individuals had a 27% lower risk of stroke incidence or mortality than the low-active individuals. Both ischemic and hemorrhagic strokes were lower in moderately and highly active individuals. Results appeared to be slightly stronger for case-control studies than for cohort studies, but there was no statistically significant evidence of heterogeneity by study type.

Our study indicates that physical activity probably reduces stroke risk. However, physical activity questionnaires tend to be imprecise and have large measurement error, and therefore
the pooled estimates of RR may have underestimated the true RR. We recently showed a strong inverse relation between cardiorespiratory fitness, an objective marker of physical activity, and stroke mortality.29

There are several plausible ways by which physical activity might reduce stroke risk. Hypertension and atherosclerosis of cerebral vessels are major causes of stroke.3,4 Hypertension is a risk factor for both ischemic and hemorrhagic strokes, and there is a direct dose-response relationship between blood pressure and stroke risk.40 Physical activity lowers blood pressure and improves lipid profiles.41 Physical activity also improves endothelial function, which enhances vasodilation and vasomotor function in the vessels.52 In addition, physical activity can play an antithrombotic role by reducing blood viscosity,43 fibrinogen levels,44 and platelet aggregability45 and by enhancing fibrinolysis,46–48 all of which might reduce cardiac and cerebral events.

One limitation of our meta-analysis is that few studies were available to investigate the relation of physical activity to hemorrhagic stroke.6,11,26 although many studies have shown an inverse relationship between physical activity and ischemic stroke. More studies are needed to investigate the relation of physical activity to hemorrhagic stroke. Another limitation is that the definitions of low, moderate, and high activity varied widely among studies, making it impossible to be entirely specific about the amount and type of physical activity required to prevent stroke. The degree of control for confounding variables also varied from study to study. Most studies adjusted for some risk factors besides age; approximately one third adjusted for high blood pressure. If the causal pathway is that physical activity reduces stroke by lowering blood pressure, then not adjusting for blood pressure would be inappropriate.

In conclusion, our meta-analysis documents that moderately or highly active individuals have a reduced risk of stroke incidence or mortality. Reduction of stroke risk is another reason to participate in regular and moderate-to-high-intensity physical activity.

Acknowledgments

This research was supported by National Institutes of Health training grant T32-HL07779, National Institutes of Health grant AG06945, and a Killgore Research Enhancement grant from West Texas A&M University.

References

Physical Exercise and Stroke: The Sitting Majority Has a Lesson to Learn

One of the most simple, natural, and cheapest ways of preventing a stroke is to exercise regularly. In spite of this trivial wisdom it is hard to get people to increase their cardiovascular fitness, probably because no direct gains are visible and no immediate rewards are attached. One report from Canada estimates that about two thirds of the population are inactive, and the public health burden resulting from this amounts to 2.5% of direct total health costs.1 For this sitting majority there is now a lesson to be learned. Lee et al report in this issue of Stroke2 a meta-analysis of all studies published up to mid-2002, including epidemiological as well as case-control studies, showing a clear benefit of physical activity to prevent both stroke incidence and mortality. The magnitude of the effect is considerable, homogenous, and significant: highly active individuals had a 21% lower risk of ischemic stroke and a 34% lower risk of hemorrhagic stroke when compared with low-active individuals.

What has also become evident is that no large differences exist between countries. The studies for this meta-analysis have come from North America and include data from the Framingham cohort and the Northern Manhattan Stroke Study. Other data are from the United Kingdom, Scandinavia, Netherlands, Japan, and Australia. The pooled results show unequivocally that high-level physical activity should become a global recommendation for stroke prevention. Not considering malnutrition and social impoverishment as contributing causes of stroke in less developed countries, there is no reason to assume that physical exercise should be less effective in any other social, cultural, or ethnic setting.

Physical activity has also been shown to reduce cardiovascular diseases as well as stroke in women. Although the authors have not presented a separate analysis for this, the obtainable benefits are also impressive.3,4

Finally, this article also compiles the evidence for a dose-response relationship: High level activity is better than moderate-level activity, but moderate activity is also effective when compared with low-level activity. When all studies are combined, the moderately active individuals had a 20% lower risk of stroke and death than did low-active persons.

This graded effect of reducing the risk of stroke with vigorous levels compared with moderate levels of physical exercise implies more than just a causal relationship. It shows that the moderate approach also is effective in a measurable, significant, and recommendable way. It shows that people inclined to exercise on moderate levels can also expect some advantage to prevent a stroke. But the role of walking compared with vigorous exercise has to be studied further for stroke prevention and has up to now been has only prospectively assessed for the prevention of cardiovascular events.3 This is an important issue for future studies because the moderate activity approach seems to fit best for a mass approach.

A lot of the effects could be due to concomitant risk factor modification such as blood pressure lowering. Wisely, the authors argue that if the effect is via blood pressure reduction, the meta-analysis should not control for it. Still, this has been done in one third of the studies. But the major limitation of this study is that no clear working definitions for intensity of

physical exercise have been provided. Most studies use physical activity questionnaires, which are known to be imprecise and biased, especially if quantification is based on self-reported estimates. Other studies have used prespecified categories for light-moderate (such as walking) and heavy physical activity (such as jogging). Usually no parallel caloric measurements or weight controls are performed, and no single laboratory marker has been shown practical for concomitant study, even if lipid profiles and other atherogenic markers such as leukocyte count or tumor necrosis factor could be valuable parameters to monitor risk. On the other hand, surrogate markers such as carotid intima-media thickness cannot be measurably influenced by physical activity. Others still recommend peak oxygen uptake or peak energy expenditure as a relation to oxygen uptake when a person is at rest as a robust measure of physical fitness.

It is now established beyond reasonable doubt that high-level physical activity is to be strongly recommended for the prevention of stroke. Primary care physicians and stroke specialists will now be able to recommend this very effective measure with a higher level of certainty. Still, a truly randomized controlled trial assessing the prospective rates of stroke incidence (or recurrence) is needed. Only such a trial would quantify the true measures of physical activity to be recommended for stroke prevention.

Michael Brainin, MD, Guest Editor
Department of Neurology and Neurosciences Center

Donauklinikum and Danube University
Maria Gugging, Austria

References