Gene-Targeted Mice Reveal a Critical Role for Inducible Nitric Oxide Synthase in Vascular Dysfunction During Diabetes

Carol A. Gunnett, PhD; Donald D. Heistad, MD; Frank M. Faraci, PhD

Background and Purpose—Inducible nitric oxide synthase (iNOS) is a mediator of vascular dysfunction during inflammation. The purpose of this study was to test the hypothesis that vascular dysfunction during diabetes is dependent on expression of iNOS.

Methods—Diabetes was produced in mice with streptozotocin (150 mg/kg IP). After 4 to 6 months of diabetes, vasomotor function was examined in vitro in carotid arteries from mice with targeted disruption of the gene for iNOS (iNOS-deficient mice) and from normal, wild-type (WT) mice.

Results—Contractile responses of carotid arteries to U46619, a thromboxane A2 analogue, were not altered by diabetes in WT mice. Responses to U46619 were increased in arteries from diabetic iNOS-deficient mice compared with diabetic WT and nondiabetic iNOS-deficient and WT mice). These results indicate that expression of iNOS inhibits an increased vasoconstrictor response during diabetes. Arteries from nondiabetic WT mice relaxed 83 ± 2% (mean ± SE) in response to acetylcholine (1 μmol/L) compared with 58 ± 6% in arteries from diabetic WT mice (P < 0.05 versus nondiabetic mice). In contrast, relaxation of carotid arteries to acetylcholine was similar (81 ± 4% versus 76 ± 6%; P > 0.05) in iNOS-deficient mice under nondiabetic and diabetic conditions, respectively. Thus, diabetes produced impairment of endothelium-dependent relaxation in arteries from WT but not iNOS-deficient mice. Endothelium-independent relaxation in response to nitroprusside was similar in arteries from all mice.

Conclusions—These results provide the first direct evidence that impairment of endothelium-dependent relaxation during diabetes is dependent on expression of iNOS. (Stroke. 2003;34:2970-2974.)

Key Words: acetylcholine • endothelium-derived relaxing factor • nitric oxide • streptozotocin

Hyperglycemia and/or diabetes activates components of the inflammatory response in vascular tissue and plasma.1–5 Mechanisms by which inflammation contributes to vascular dysfunction in diabetes are not well understood. Inducible nitric oxide synthase (iNOS) is expressed in blood vessels in response to inflammation,6–10 and recent evidence indicates that expression of iNOS occurs in blood vessels during diabetes.11,12 The functional significance of iNOS in vascular dysfunction during diabetes has not been defined.

Impaired endothelium-dependent relaxation is a hallmark of vascular dysfunction in experimental models of diabetes13,14 and in humans with both type I and type II diabetes mellitus.15–17 Endothelial nitric oxide synthase (eNOS) is a critical mediator of endothelium-dependent relaxation, but the role of iNOS in endothelial function is poorly understood. Recently, using gene transfer of iNOS to normal arteries, we and others found that iNOS impairs endothelium-dependent relaxation.18–20 Because iNOS is expressed and endothelial dysfunction is present in arteries during diabetes, and because iNOS has the potential to impair endothelial function, we speculated that iNOS impairs endothelial function in diabetes.

The first goal of this study was to examine the hypothesis that impairment of endothelium-dependent relaxation in blood vessels during diabetes is dependent on expression of iNOS.

Although it is known that vasoconstrictor responses are altered in diabetes,15,21–26 mechanisms that account for these changes are not well defined. Expression of iNOS in blood vessels impairs contractile responses under some conditions.6,18,27 Thus, the second goal of these studies was to test the hypothesis that iNOS inhibits vasoconstrictor responses during diabetes.

Materials and Methods

Animals
We examined diabetic and nondiabetic wild-type (WT) and iNOS-deficient mice. Mice with targeted disruption of the gene for iNOS were obtained initially from Dr John Mudgett.28 Most of the WT mice were littermate controls. A few C57BL/6 mice, which are the background strain for the iNOS-deficient strain, were used as additional controls. We found no differences in responses of arteries from WT littermates and C57BL/6 mice in this or previous studies.6,28 In the present study data from WT littermates and WT C57BL/6 mice were combined. All procedures followed were within...
institutional guidelines approved by the Animal Care and Use Committee at University of Iowa.

Diabetes

Male and female mice (aged 8 to 16 weeks) were randomly assigned to receive either streptozotocin (150 mg/kg IP) or vehicle (citrate). Repeated low doses of streptozotocin are sometimes used to produce diabetes in mice, but a previous study reported that the low-dose regimen failed to produce diabetes in this strain of iNOS-deficient mice.30 Our preliminary experiments indicated, however, that a single dose of 150 mg/kg of streptozotocin was effective in producing hyperglycemia in approximately 70% of iNOS-deficient and WT mice. Thus, we used a single high dose of streptozotocin in these studies. Mice that did not become diabetic after streptozotocin were used as nondiabetic controls.

Vascular Function

Vasomotor function of carotid arteries was examined in vitro 4 to 6 months after vehicle or streptozotocin by measurement of isometric tension, as described previously.6,7,27,31 Briefly, mice were anesthetized with pentobarbital (75 to 100 mg/kg IP), and carotid arteries were removed and immediately placed in oxygenated Krebs’ buffer. Vessels were then suspended between 2 triangular hooks in an organ bath and attached to a force transducer for measurement of isometric tension.

We examined dose-dependent contraction of carotid rings in response to the thromboxane A2 analogue U46619 and relaxation in response to acetylcholine (1 nmol/L to 3 μmol/L) or nitroprusside (1 nmol/L to 100 μmol/L) after submaximal precontraction with U46619. To compensate for any variability between groups in constritor responses to U46619, we preconstricted vessels to approximately 50% to 60% of maximum response to U46619 rather than using a single concentration of U46619 for all vessels. Responses of the carotid artery to acetylcholine are mediated by eNOS independent vasorelaxation.

Drugs

Streptozotocin, acetylcholine, and sodium nitroprusside were obtained from Sigma Chemical Co. Sodium citrate was obtained from Fisher Scientific. U46619 was obtained from Cayman Chemical. Streptozotocin, acetylcholine, and sodium nitroprusside were dissolved and diluted in normal saline. All other drugs were dissolved and diluted in normal saline. Concentrations are expressed as final concentration of each drug in the organ bath.

Statistical Analysis

Data are expressed as mean±SEM. Group differences were determined by ANOVA followed by the Tukey post hoc test to evaluate significant differences between means. *P<0.05 was considered to be statistically significant. Relaxation to acetylcholine and sodium nitroprusside was expressed as percent relaxation from precontraction to U46619.

Results

Diabetes

Blood glucose concentrations of >13.8 mmol/L were used as the criterion for inclusion of mice in the diabetic groups. Blood glucose concentrations during diabetes were 23.9±0.9 mmol/L in WT mice and 27.2±2.2 mmol/L in iNOS-deficient mice.

In nondiabetic mice, mean blood glucose levels were 6.5±0.2 mmol/L in WT mice and 6.6±0.5 mmol/L in iNOS-deficient mice.

Figure 1. Contractile responses to U46619 were similar in arteries from nondiabetic (n=10) and diabetic (n=6) WT mice (P>0.05; left). In iNOS-deficient mice (right), responses to U46619 were enhanced during diabetes (n=10) (*P<0.05 vs nondiabetic [n=16]).

Contraction of Carotid Arteries

We examined contraction of carotid arteries from diabetic and nondiabetic mice in response to U46619 (Figure 1). All arteries contracted in a dose-dependent manner in response to U46619. In WT mice, vasoconstriction in response to U46619 was similar in nondiabetic and diabetic groups (Figure 1, left). In contrast, contraction of the carotid artery in response to U46619 was enhanced in diabetic iNOS-deficient mice compared with nondiabetic iNOS-deficient mice (Figure 1, right).

Endothelium-Dependent Relaxation of Carotid Arteries

To study vasorelaxation, precontraction was matched in arteries from diabetic and nondiabetic mice of each genotype. Carotid arteries from nondiabetic WT mice relaxed in a dose-dependent fashion in response to acetylcholine (Figure 2). In diabetic WT mice, relaxation to acetylcholine was impaired in nondiabetic mice (Figure 2, left). In contrast, relaxation to acetylcholine was not impaired in iNOS-deficient mice (Figure 2, right).
iNOS Inhibits Increases in Vasoconstrictor Responses During Diabetes

In nondiabetic mice, vasomotor responses are similar in arteries from WT and iNOS-deficient mice. Thus, disruption of the iNOS gene, per se, does not alter normal vascular function. This finding is similar to our previous study. Differences in vasomotor responses in these studies therefore indicate differential effects of diabetes in arteries with and without expression of iNOS.

Although effects of diabetes on vasoconstrictor responses vary in previous studies, vasooconstrictor responses to U46619 are increased in diabetic iNOS-deficient but not WT mice in the present study. This finding suggests that expression of iNOS during diabetes inhibits vasoconstriction. Thus, expression of iNOS may be a protective, compensatory response during diabetes that limits excessive vasoconstriction. Inhibition of vasoconstrictor responses by iNOS during diabetes would be consistent with previous studies in other models in which contraction of vascular muscle is inhibited by iNOS. Previous studies suggest that iNOS may inhibit constriction of vascular muscle by the production of high levels of NO.

Although iNOS impairs constrictor responses in some settings, and several findings in this study suggest that iNOS is expressed in diabetic vessels, our present data show only a tendency (not significant) toward less constriction in carotid arteries from WT mice during diabetes. One of several possibilities may explain this apparent paradox. Our first suggestion is that enhanced sensitivity to U46619 during diabetes, as was unmasked in NOS-deficient mice, counterbalances impaired contractility produced by iNOS during diabetes, with a net result of fairly normal constriction in WT mice. We can speculate about a few other explanations. It is possible that levels of expression of iNOS in carotid arteries during diabetes are insufficient to produce impairment of constriction in WT mice. In a previous study using gene transfer of iNOS, we provided data supporting the concept that effects of iNOS on vascular function are dose dependent. In that study we saw a more dramatic effect of iNOS in producing impairment of endothelium-dependent relaxation than in impairment of contraction. Another possibility is that localization of expression of iNOS may have a major influence on its impact on vascular function. For example, selective expression of iNOS in endothelium may have different effects than selective expression of iNOS in adventitia or vascular muscle on constriction and/or relaxation.

Endothelial Dysfunction During Diabetes Is Dependent on Expression of iNOS

Preliminary experiments revealed that consistent impairment of endothelial function in carotid arteries in WT mice did not occur until approximately 4 months after induction of diabetes. In many studies, and also our own preliminary data, endothelial dysfunction occurs after shorter durations of diabetes in aorta from rats and mice. To our knowledge, these are the first studies to examine the function of carotid artery in mice during diabetes. In this study we chose a duration of diabetes that was long enough to produce substantial effects on vascular function in WT mice because we anticipated that the degree of dysfunction would be decreased in iNOS-deficient mice.

Diabetes produced impaired relaxation to acetylcholine in carotid arteries from WT mice but not in arteries from iNOS-deficient mice. Because impairment does not occur in the absence of iNOS, this study provides the first direct evidence that iNOS is a key mediator of endothelial dysfunction during diabetes. Although previous studies using aminoguanidine demonstrated improvement in vascular function in diabetes, those studies are limited and difficult to interpret because aminoguanidine has several known effects in
addition to inhibition of iNOS. For example, aminoguanidine inhibits the development of advanced glycation end products, which are thought to contribute to the pathophysiology of diabetes. Previous studies have emphasized the importance of aminoguanidine in decreasing advanced glycation end products, but the data also support a role for iNOS in diabetic vascular dysfunction.

Data in this study are consistent with previous studies in which gene transfer of iNOS to blood vessels impaired endothelium-dependent relaxation. Although gene transfer approaches offer several advantages for studying mechanisms by which iNOS alters vascular function, there are also limitations to this approach. For example, the spatial and temporal expression of iNOS may not be the same after gene transfer when expression of iNOS is under control of a viral, rather than the endogenous, promoter. Thus, it is important to examine effects of endogenous iNOS. The present study of vascular effects of iNOS during diabetes, using genetically modified mice that do not express iNOS, allowed us to study the role of endogenous iNOS.

One potential mechanism by which iNOS may impair endothelium-dependent relaxation involves the generation of superoxide. Endothelial dysfunction during diabetes is improved by scavengers of superoxide. NO enzymes, including iNOS, can produce superoxide in settings with limited availability of substrate or cofactors. Including iNOS, can produce superoxide in settings with increased levels of superoxide. Endothelial dysfunction during diabetes is impaired by scavengers of superoxide. NO enzymes, including iNOS, can produce superoxide in settings with limited availability of substrate or cofactors. For example, a recent study suggests that during hyperhomocysteinemia, superoxide is produced by both NAD(P)H-oxidase and iNOS. Furthermore, superoxide levels are elevated in arteries after gene transfer of iNOS. Thus, iNOS may impair endothelium-dependent relaxation during diabetes by producing increased levels of superoxide.

Summary and Conclusions

Results of this study indicate that iNOS has a dual role in vascular function during diabetes. First, iNOS inhibits increases in vasoconstrictor responses during diabetes. Second, the present findings provide direct evidence that impairment of endothelium-dependent relaxation, which may contribute to cardiovascular dysfunction during diabetes, is dependent on expression of iNOS.

Acknowledgments

This work was supported by American Heart Association grant 0030154N; National Institutes of Health grants HL-38901, HL-62984, HL-16066, HL-14388, and NS-24621; funds from the Veterans Affairs Medical Center; and funds from a Carver Trust Program of Excellence. We thank Dr Robert Bar for consultation and assistance in designing this study; Arlinda LaRose for secretarial assistance; and Makalah Haessler and Lisa Tamaki for technical assistance with vascular function studies.

References

Gene-Targeted Mice Reveal a Critical Role for Inducible Nitric Oxide Synthase in Vascular Dysfunction During Diabetes
Carol A. Gunnett, Donald D. Heistad and Frank M. Faraci

Stroke. 2003;34:2970-2974; originally published online December 1, 2003;
doi: 10.1161/01.STR.000099123.55171.3F
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2003 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/34/12/2970

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Stroke* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Stroke* is online at:
http://stroke.ahajournals.org//subscriptions/