Interleukin-6 and Stroke: Cerebral Ischemia Versus Nonspecific Factors Influencing Interleukin-6

To the Editor:
We have read with great interest the article of Acalovschi and colleagues.1 Highly appreciating the scientific value of this article, we would like to address several important issues not discussed by the authors.

Albeit about 8 independent studies have demonstrated interleukin-6 (IL-6) increase in serum/plasma of acute stroke patients, the virtual magnitude of this phenomenon is still difficult to assess. Many factors can confound the results of human studies. Some of these factors, such as psychological stress that could increase IL-6 level in blood,2 are difficult to control and quantify. The important group of factors significantly elevating IL-6 level constitutes vascular risk factors: hypertension, diabetes mellitus, obesity, and cigarette smoking.3,4 Coronary artery disease (even stable angina), a condition not rare in stroke patients, is also associated with increased serum IL-6 level.5 When a stroke patient group is compared with healthy subjects, it is not possible to separate serum IL-6 increase due to vascular risk factors from that triggered by cerebral ischemia. Serial measurement of IL-6 during stroke is helpful to determine kinetics of this cytokine (relative increase or decrease), but it does not allow to determine in which degree brain ischemia by itself elevates IL-6 level. Therefore it seems rational to use in future studies not only one control group consisting of healthy individuals, but also another control group matched not only for age and sex, but also for cardiovascular risk factors profile.

Several drugs often used in stroke patients (aspirin, statins, and probably beta-blockers and ACE-inhibitors) could significantly reduce serum IL-6 level.5–7 In the study of Acalovschi and colleagues, a significant number of patients was treated with antiplatelet drugs and statins during hospitalization (but it is not clear how the patients were treated after discharge during the follow-up period). These drugs, by inhibiting effects on the inflammatory reaction, could lessen the differences of IL-6 between studied groups. Therefore, in order to separate serum IL-6 increase due to vascular risk factors from that triggered by cerebral ischemia or to the preexisting vascular pathology, it would be helpful to determine kinetics of this cytokine (relative increase or decrease), but it does not allow to determine in which degree brain ischemia by itself elevates IL-6 level. Therefore it seems rational to use in future studies not only one control group consisting of healthy individuals, but also another control group matched not only for age and sex, but also for cardiovascular risk factors profile.

The choice of control group could explain why, in contrast to some previous studies including subjects with cardiovascular risk factors as controls,6,8 in the study of Acalovschi and colleagues, a significant number of patients was treated with antiplatelet drugs and statins during hospitalization (but it is not clear how the patients were treated after discharge during the follow-up period). These drugs, by inhibiting effects on the inflammatory reaction, could lessen the differences of IL-6 between studied groups. Therefore, in future studies the control group should include, if possible, subjects treated similarly as stroke patients (for example, patients with stable angina treated with aspirin and statins).

A number of patients was treated after discharge during the follow-up period). These drugs, by inhibiting effects on the inflammatory reaction, could lessen the differences of IL-6 between studied groups. Therefore, in order to separate serum IL-6 increase due to vascular risk factors from that triggered by cerebral ischemia or to the preexisting vascular pathology, it would be helpful to determine kinetics of this cytokine (relative increase or decrease), but it does not allow to determine in which degree brain ischemia by itself elevates IL-6 level. Therefore it seems rational to use in future studies not only one control group consisting of healthy individuals, but also another control group matched not only for age and sex, but also for cardiovascular risk factors profile.

Several drugs often used in stroke patients (aspirin, statins, and probably beta-blockers and ACE-inhibitors) could significantly reduce serum IL-6 level.5–7 In the study of Acalovschi and colleagues, a significant number of patients was treated with antiplatelet drugs and statins during hospitalization (but it is not clear how the patients were treated after discharge during the follow-up period). These drugs, by inhibiting effects on the inflammatory reaction, could lessen the differences of IL-6 between studied groups. Therefore, in order to separate serum IL-6 increase due to vascular risk factors from that triggered by cerebral ischemia or to the preexisting vascular pathology, it would be helpful to determine kinetics of this cytokine (relative increase or decrease), but it does not allow to determine in which degree brain ischemia by itself elevates IL-6 level. Therefore it seems rational to use in future studies not only one control group consisting of healthy individuals, but also another control group matched not only for age and sex, but also for cardiovascular risk factors profile.

Several drugs often used in stroke patients (aspirin, statins, and probably beta-blockers and ACE-inhibitors) could significantly reduce serum IL-6 level.5–7 In the study of Acalovschi and colleagues, a significant number of patients was treated with antiplatelet drugs and statins during hospitalization (but it is not clear how the patients were treated after discharge during the follow-up period). These drugs, by inhibiting effects on the inflammatory reaction, could lessen the differences of IL-6 between studied groups. Therefore, in order to separate serum IL-6 increase due to vascular risk factors from that triggered by cerebral ischemia or to the preexisting vascular pathology, it would be helpful to determine kinetics of this cytokine (relative increase or decrease), but it does not allow to determine in which degree brain ischemia by itself elevates IL-6 level. Therefore it seems rational to use in future studies not only one control group consisting of healthy individuals, but also another control group matched not only for age and sex, but also for cardiovascular risk factors profile.

Several drugs often used in stroke patients (aspirin, statins, and probably beta-blockers and ACE-inhibitors) could significantly reduce serum IL-6 level.5–7 In the study of Acalovschi and colleagues, a significant number of patients was treated with antiplatelet drugs and statins during hospitalization (but it is not clear how the patients were treated after discharge during the follow-up period). These drugs, by inhibiting effects on the inflammatory reaction, could lessen the differences of IL-6 between studied groups. Therefore, in order to separate serum IL-6 increase due to vascular risk factors from that triggered by cerebral ischemia or to the preexisting vascular pathology, it would be helpful to determine kinetics of this cytokine (relative increase or decrease), but it does not allow to determine in which degree brain ischemia by itself elevates IL-6 level. Therefore it seems rational to use in future studies not only one control group consisting of healthy individuals, but also another control group matched not only for age and sex, but also for cardiovascular risk factors profile.

Several drugs often used in stroke patients (aspirin, statins, and probably beta-blockers and ACE-inhibitors) could significantly reduce serum IL-6 level.5–7 In the study of Acalovschi and colleagues, a significant number of patients was treated with antiplatelet drugs and statins during hospitalization (but it is not clear how the patients were treated after discharge during the follow-up period). These drugs, by inhibiting effects on the inflammatory reaction, could lessen the differences of IL-6 between studied groups. Therefore, in order to separate serum IL-6 increase due to vascular risk factors from that triggered by cerebral ischemia or to the preexisting vascular pathology, it would be helpful to determine kinetics of this cytokine (relative increase or decrease), but it does not allow to determine in which degree brain ischemia by itself elevates IL-6 level. Therefore it seems rational to use in future studies not only one control group consisting of healthy individuals, but also another control group matched not only for age and sex, but also for cardiovascular risk factors profile.

Several drugs often used in stroke patients (aspirin, statins, and probably beta-blockers and ACE-inhibitors) could significantly reduce serum IL-6 level.5–7 In the study of Acalovschi and colleagues, a significant number of patients was treated with antiplatelet drugs and statins during hospitalization (but it is not clear how the patients were treated after discharge during the follow-up period). These drugs, by inhibiting effects on the inflammatory reaction, could lessen the differences of IL-6 between studied groups. Therefore, in order to separate serum IL-6 increase due to vascular risk factors from that triggered by cerebral ischemia or to the preexisting vascular pathology, it would be helpful to determine kinetics of this cytokine (relative increase or decrease), but it does not allow to determine in which degree brain ischemia by itself elevates IL-6 level. Therefore it seems rational to use in future studies not only one control group consisting of healthy individuals, but also another control group matched not only for age and sex, but also for cardiovascular risk factors profile.

Several drugs often used in stroke patients (aspirin, statins, and probably beta-blockers and ACE-inhibitors) could significantly reduce serum IL-6 level.5–7 In the study of Acalovschi and colleagues, a significant number of patients was treated with antiplatelet drugs and statins during hospitalization (but it is not clear how the patients were treated after discharge during the follow-up period). These drugs, by inhibiting effects on the inflammatory reaction, could lessen the differences of IL-6 between studied groups. Therefore, in order to separate serum IL-6 increase due to vascular risk factors from that triggered by cerebral ischemia or to the preexisting vascular pathology, it would be helpful to determine kinetics of this cytokine (relative increase or decrease), but it does not allow to determine in which degree brain ischemia by itself elevates IL-6 level. Therefore it seems rational to use in future studies not only one control group consisting of healthy individuals, but also another control group matched not only for age and sex, but also for cardiovascular risk factors profile.

Several drugs often used in stroke patients (aspirin, statins, and probably beta-blockers and ACE-inhibitors) could significantly reduce serum IL-6 level.5–7 In the study of Acalovschi and colleagues, a significant number of patients was treated with antiplatelet drugs and statins during hospitalization (but it is not clear how the patients were treated after discharge during the follow-up period). These drugs, by inhibiting effects on the inflammatory reaction, could lessen the differences of IL-6 between studied groups. Therefore, in order to separate serum IL-6 increase due to vascular risk factors from that triggered by cerebral ischemia or to the preexisting vascular pathology, it would be helpful to determine kinetics of this cytokine (relative increase or decrease), but it does not allow to determine in which degree brain ischemia by itself elevates IL-6 level. Therefore it seems rational to use in future studies not only one control group consisting of healthy individuals, but also another control group matched not only for age and sex, but also for cardiovascular risk factors profile.

Several drugs often used in stroke patients (aspirin, statins, and probably beta-blockers and ACE-inhibitors) could significantly reduce serum IL-6 level.5–7 In the study of Acalovschi and colleagues, a significant number of patients was treated with antiplatelet drugs and statins during hospitalization (but it is not clear how the patients were treated after discharge during the follow-up period). These drugs, by inhibiting effects on the inflammatory reaction, could lessen the differences of IL-6 between studied groups. Therefore, in order to separate serum IL-6 increase due to vascular risk factors from that triggered by cerebral ischemia or to the preexisting vascular pathology, it would be helpful to determine kinetics of this cytokine (relative increase or decrease), but it does not allow to determine in which degree brain ischemia by itself elevates IL-6 level. Therefore it seems rational to use in future studies not only one control group consisting of healthy individuals, but also another control group matched not only for age and sex, but also for cardiovascular risk factors profile.

Sev
it is hoped that future studies will elucidate the tissue source of the IL-6 rise in stroke. Definite evidence for a neural source of IL-6 in stroke would provide a tool to study neuroinflammatory processes in the human brain.

Markus Schwaninger, MD, PhD
Department of Neurology
University of Heidelberg
Heidelberg, Germany

Armin Grau, MD, PhD
Department of Neurology
Klinikum Ludwigshafen
Ludwigshafen, Germany

Daniela Acalovschi
Departments of Neurology
University of Heidelberg
Heidelberg, Germany
and University of Cluj-Napoca
Cluj-Napoca, Romania

Interleukin-6 and Stroke: Cerebral Ischemia Versus Nonspecific Factors Influencing Interleukin-6
Tomasz Dziedzic, Agnieszka Slowik and Andrzej Szczudlik

Stroke. 2003;34:e229-e230; originally published online December 1, 2003;
doi: 10.1161/01.STR.0000103350.88094.5B
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2003 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/34/12/e229

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/