Symptomatic and Asymptomatic Retinal Embolism Have Different Mechanisms

Christine A.C. Wijman, MD; Joao A. Gomes, MD; Michael R. Winter, MPH; Behrooz Koleini, MD; Ippolit C.A. Matjucha, MD; Val E. Pochay; Viken L. Babikian, MD

Purpose—To investigate differences between symptomatic and asymptomatic retinal embolism regarding the frequency and source of cerebral microemboli.

Methods—Thirty-seven patients with transient monocular blindness or retinal infarction and 27 patients (29 eyes) with asymptomatic retinal embolism were prospectively enrolled. Patients underwent a transcranial Doppler study and noninvasive imaging of the cervical internal carotid arteries (ICA). The middle cerebral artery (MCA) ipsilateral to the affected eye was monitored for 30 minutes for microembolic signals (MES), which were saved and analyzed offline. Age-matched controls (n=15) had no history of retinal or brain ischemia, <50% ICA stenosis, and normal ophthalmologic examinations.

Results—MES were detected in 0/15 (0%) controls, 11/37 (30%) MCAs in the symptomatic group (P=0.02), and 3/29 (10%) MCAs in the asymptomatic group (P=0.54). Nine of 11 (82%) symptomatic eyes with MES had ipsilateral ICA stenosis of ≥50%, as compared with 0/3 (0%) eyes in the asymptomatic group with MES (P=0.03). Both MES and ICA stenosis of >50% were present in 9/37 (24%) cases in the symptomatic and in 0/29 (0%) cases of the asymptomatic group (P=0.0036).

Conclusions—The frequency and potential source of cerebral microemboli in symptomatic and asymptomatic retinal embolism are different. Cerebral microemboli are more frequent in symptomatic patients and are associated with ICA stenosis. (Stroke. 2004;35:e100-e102.)

Key Words: amaurosis fugax ■ cerebral embolism ■ ultrasonography, Doppler, transcranial ■ cholesterol embolism

Transient monocular blindness (TMB) has been attributed to transient ischemia of the retina caused by either embolism or vascular insufficiency, and it has been associated with stenosis or occlusion of the feeding internal carotid artery (ICA).1,2 Retinal emboli, particularly cholesterol emboli (Hollenhorst plaques), are frequently observed in asymptomatic patients and are associated with an increased risk for stroke and vascular death, but not with ICA lesions.3-6 Transcranial Doppler ultrasonography, Doppler, transcranial cerebral embolism studies have demonstrated microembolic signals (MES) in the basal vessels of the brain in patients with cerebral and retinal ischemia, cardioembolic lesions, and ICA stenosis.7-10 MES are common in patients with retinal ischemia and are associated with ICA stenosis in these patients.11 The aim of the present study was to investigate potential differences in frequency and source of MES in patients with symptomatic and asymptomatic retinal embolism.

Methods

Consecutive patients with TMB or retinal infarction and patients with asymptomatic retinal embolism were enrolled in this study.

Written consent was obtained and institutional review board approval was granted. Symptomatic patients had experienced either an episode of TMB, defined as transient, painless, monocular loss of vision usually lasting for minutes, or retinal infarction. The latter was diagnosed by a history of sudden, persistent, loss of vision in part of (or the entire) visual field of 1 eye in conjunction with the characteristic findings of central or branch retinal artery occlusion on ophthalmologic examination. Asymptomatic patients had evidence of retinal emboli on routine ophthalmologic examination and no history of visual symptoms. Fundus photographs served to confirm the ophthalmologic findings.

Patients were queried about visual symptoms, medical history, and vascular risk factors by means of a standardized questionnaire. Each patient underwent a duplex or magnetic resonance angiography (MRA) study of the ICAs, an echocardiogram, and a TCD study of the intracranial arteries, including monitoring for MES. Details regarding the methods of this study have been described in a previous report.12 All but 1 of the TCD studies were performed on a TC-2020 instrument by 1 of 2 technicians, who saved signals suspect for MES based on their auditory or visual characteristics. Saved signals were analyzed offline and identified as MES if they satisfied criteria published by the Consensus Committee of the Ninth International Cerebral Hemodynamic Symposium.13 Signals reaching an intensity...
Table 1. Baseline Characteristics in 63 Patients (With 66 Affected Eyes) With Symptomatic Retinal Ischemia (N=37) and Asymptomatic Retinal Embolism (N=29)

<table>
<thead>
<tr>
<th>Baseline Characteristic</th>
<th>Symptomatic Retinal Ischemia</th>
<th>Asymptomatic Retinal Embolism</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (%)</td>
<td>N (%)</td>
</tr>
<tr>
<td>Mean age±SD (y)</td>
<td>66±13</td>
<td>71±10</td>
</tr>
<tr>
<td>Female</td>
<td>8/37 (22)</td>
<td>2/29 (7)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>21/37 (57)</td>
<td>19/29 (66)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>9/37 (24)</td>
<td>12/29 (41)</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>16/37 (43)</td>
<td>16/28* (57)</td>
</tr>
<tr>
<td>History of hyperlipidemia</td>
<td>25/32* (78)</td>
<td>17/25* (68)</td>
</tr>
<tr>
<td>Any history of smoking</td>
<td>33/37 (89)</td>
<td>21/27* (78)</td>
</tr>
<tr>
<td>Ipsilateral ICA stenosis >50%</td>
<td>17/37 (46)</td>
<td>9/29 (31)</td>
</tr>
<tr>
<td>Aortic arch >4 mm</td>
<td>1/8* (13)</td>
<td>3/6* (50)</td>
</tr>
<tr>
<td>Cardioembolic lesion†</td>
<td>4/37 (11)</td>
<td>4/29 (14)</td>
</tr>
<tr>
<td>>1 Potential embolic source</td>
<td>3/37 (8)</td>
<td>3/29 (10)</td>
</tr>
</tbody>
</table>

*The denominators differ when information regarding a certain baseline characteristic was not available in every patient.
†Determined according to the criteria used for the Trial of Org 10172 in Acute Stroke Treatment (TOAST) classification. Only high-risk cardioembolic sources were recorded.
ICA indicates internal carotid artery.

Discussion

The results of this study show that in contrast to asymptomatic retinal embolism, cerebral microembolism is relatively increased in symptomatic retinal ischemia, and it is associated with ICA stenosis. They suggest that symptomatic and asymptomatic retinal embolisms have different pathophysiologic mechanisms. The clinical correlate is the increased risk of retinal or brain infarction after TMB as compared with asymptomatic retinal embolism. These findings are consistent with the hypothesis that cerebral embolism in symptomatic patients is a more persistent process rather than a 1-time event, or that emboli in asymptomatic patients are smaller, not reaching the 14-dB threshold, and not causing retinal or cerebral symptoms. It is also possible that the composition of emboli differs between symptomatic and asymptomatic pa-

Table 2. Presumed Cause and Frequency of Cerebral Microembolic Signals in the Ipsilateral Middle Cerebral Artery In Symptomatic Retinal Ischemia (N=37) and Asymptomatic Retinal Embolism (N=29)

<table>
<thead>
<tr>
<th>Cause</th>
<th>Symptomatic Eyes With MES N (%)</th>
<th>Asymptomatic Eyes With MES N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICA stenosis >50% (N=26)</td>
<td>9/17 (53)</td>
<td>0/9 (0)*</td>
</tr>
<tr>
<td>Aortic arch >4 mm (N=2)</td>
<td>0/0 (0)</td>
<td>1/2 (50)</td>
</tr>
<tr>
<td>Cardioembolism (N=4)</td>
<td>0/2 (0)</td>
<td>0/2 (0)</td>
</tr>
<tr>
<td>Other (N=5)†</td>
<td>0/5 (0)</td>
<td>0/0 (0)</td>
</tr>
<tr>
<td>No lesion identified (N=29)</td>
<td>2/13 (15)</td>
<td>2/16 (13)</td>
</tr>
<tr>
<td>Total (N=66)</td>
<td>11/37 (30)</td>
<td>3/29 (10)</td>
</tr>
</tbody>
</table>

*P=0.0094.
†This category includes hypercoagulable states, systemic lupus erythematosus, and ophthalmic artery disease.
MES indicates microembolic signals; ICA, internal carotid artery.
tients, and that cholesterol emboli are not detected as readily by the available TCD technology. An alternative explanation is related to the study’s methodology: symptomatic patients were studied soon after symptom onset, whereas asymptomatic patients could have sustained retinal embolism weeks or months before the TCD examination. This difference in the time-to-monitoring may have affected the yield of the TCD studies in asymptomatic patients.

Retinal ischemia has been associated with various cardiac and arterial lesions, but in >40% of extensively evaluated patients no apparent cause can be detected. In this study, the presence of MES in the MCA ipsilateral to the symptomatic eye was associated with an increased chance of finding a significant ICA stenosis, and it characterized this subgroup. We suspect the ICA lesions were the source of microemboli corresponding to the MES. Thus, the finding of cerebral microemboli in a symptomatic patient is clinically relevant in that it increases the likelihood that the mechanism for retinal ischemia is embolism originating from a potentially operable ICA lesion.

In the asymptomatic retinal embolism group, ICA stenosis was present in only one third of cases, and none of the 3 patients with MES in this group had substantial ICA disease. It can be argued that ICA lesions causing <50% stenosis could have served as a source for retinal emboli in these patients. Alternatively, and more likely, microemboli may have originated from more proximal large-vessel atherosclerotic lesions, such as the aortic arch. An argument in favor of this hypothesis is that 3 patients (10%) in the asymptomatic group had retinal emboli affecting both eyes.

Acknowledgments
The authors thank Nancy Allen, RN, Dr Naveen Goyal, Dr Lenore N. Joseph, and Dr Salman N. Malik, for their assistance with the data collection for this study.

References
Symptomatic and Asymptomatic Retinal Embolism Have Different Mechanisms
Christine A.C. Wijman, Joao A. Gomes, Michael R. Winter, Behrooz Koleini, Ippolit C.A. Matjucha, Val E. Pochay and Viken L. Babikian

Stroke. 2004;35:e100-e102; originally published online March 18, 2004;
doi: 10.1161/01.STR.0000125009.05353.7c

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2004 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/35/5/e100

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Stroke* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Stroke* is online at:
http://stroke.ahajournals.org/subscriptions/