Neuroprotective Effects of MK-801 and Catecholamine Release in the Central Nervous System

To the Editor:

We read with great interest the recent article by Gerriets and colleagues dealing with the neuroprotective effects of MK-801, the N-methyl-D-aspartate (NMDA) receptor antagonist, in the different rat stroke models for the permanent middle cerebral artery occlusion (MCAO). The results of their presented study demonstrated that, because hypothalamic damage and subsequent hyperthermia can confound the results, the macrosphere MCAO models without hypothalamic damage may be more appropriate to study the neuroprotective effects of MK-801 than the suture MCAO and the macrosphere MCAO models with hypothalamic infarction.

Several studies have reported the mechanisms for the neuroprotective effects of MK-801 in the central nervous system. In a study we presented earlier, changes in norepinephrine (NE) release evoked by L-glutamate was investigated in rat central nervous system. In an in vitro study, we showed that L-glutamate increased the release of NE from rat medulla oblongata, and further observed that the facilitative effect of L-glutamate on NE release was more pronounced in spontaneously hypertensive rats than in normotensive rats. In addition, it was demonstrated that MK-801 significantly reversed the increase in NE release evoked by L-glutamate. It would be possible that the sympatholytic action might partially explain the neuroprotective effects of MK-801 against hypertension and other neurotoxic disorders.

In the ischemic neuronal models, Nakai et al. showed that ischemia significantly increased NE release in rat spinal cord. They also demonstrated that MK-801 suppressed the release of NE and glutamate produced by ischemia. The finding suggests that glutamate release and NMDA receptors may be involved in the acute effect of oxygen and glucose deprivation on the excessive release of NE in the ischemic regions. It was also reported that in the unilateral brain ischemia model induced by injecting microspheres into the left internal arterial artery of the rat, the embolization caused significant depletion of catecholamine levels in the injured hemisphere. Therefore, we would like to know the magnitude of the changes in the content or release of catecholamines and glutamate in the injured regions of the macrosphere MCAO models without hypothalamic damage. Further studies should be performed to assess more thoroughly the relationships between brain ischemia and neuroprotective effects of MK-801.

Kazushi Tsuda, MD, FAHA
Division of Cardiology
Department of Medicine
Wakayama Medical University
Wakayama, Japan

References:
Neuroprotective Effects of MK-801 and Catecholamine Release in the Central Nervous System
Kazushi Tsuda

*Stroke*. 2004;35:e96; originally published online April 1, 2004;
doi: 10.1161/01.STR.0000125718.25853.69

*Stroke* is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2004 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/35/5/e96

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Stroke* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Stroke* is online at:
http://stroke.ahajournals.org//subscriptions/