Hyperinsulinemia and Estrogen-Deficiency as Risk Factors for Stroke in Women

To the Editor:

We read with great interest the recent article by Dr. Ho and colleagues1 dealing with the relationship between diabetes and stroke mortality in women. The results of their study demonstrated that women with diabetes mellitus and no prevalent cardiovascular diseases (CVD) had a 3-fold increased fatal stroke risk compared with nondiabetic women without CVD. They proposed that, although stroke mortality was highest among women with prior stroke, diabetes carries a fat stroke risk similar to that of a history of prior stroke and may warrant more aggressive treatment strategies in the future prevention of stroke.

Numerous studies have already shown a role of hyperinsulinemia in the pathogenesis of vascular complications in circulatory disorders. Sela et al2 demonstrated that polymorphonuclear leukocytes (PMN) in essential hypertension showed increased level of intracellular calcium content correlating positively with the individual’s blood pressure and plasma insulin. They proposed that, because PMN priming may lead to oxidative stress and inflammation, intracellular calcium and insulin are involved in the pathogenesis of hypertension-induced vascular injury. In a study we presented earlier, a relationship between membrane fluidity (a reciprocal value of membrane microviscosity) of erythrocytes and insulin was investigated in essential hypertension by means of an electron paramagnetic resonance method.3 The membrane fluidity of erythrocytes was significantly lower in patients with essential hypertension than in normotensive subjects. In addition, it was demonstrated that the higher the plasma insulin level, the lower the membrane fluidity of erythrocytes, which might indicate that hyperinsulinemia might be involved in the regulation of membrane fluidity of erythrocytes in essential hypertension. In an in vitro study, we showed that insulin alone and in combination with calcium decreased membrane fluidity of erythrocytes.4 The decreased membrane fluidity of erythrocytes might cause a disturbance in the blood rheologic behavior and the microcirculation, which could contribute, at least in part, to the pathogenesis of circulatory disorders.5,6 One hypothesis is that insulin might accelerate abnormalities in intracellular calcium metabolism and membrane function in blood cells such as PMN and erythrocytes, which could partially explain the vascular complications in subjects with hyperinsulinemia.

In contrast, we demonstrated that estrogen (17β-estradiol) increased membrane fluidity of erythrocytes and improved the rigidity of cell membranes in postmenopausal women via a nitric oxide (NO)- and cyclic guanosine 3',5'-monophosphate (cGMP)-dependent mechanism.7 In the separate series of experiments, we showed that hormone replacement therapy restored the membrane microviscosity in elderly women with a concomitant increase in plasma NO metabolite level.8 It is possible that insulin and estrogen may exert opposite effects on membrane microviscosity of erythrocytes, although the precise mechanism underlying their modulatory effects on the membrane function is still uncertain. In this context, we speculate that both hyperinsulinemia and estrogen-deficiency could cause a disturbance in the blood rheologic behavior and the microcirculation. These abnormalities may induce vascular complications in women. It would be necessary to assess more precisely the roles of hyperinsulinemia and estrogen-deficiency and their contribution to the risk for stroke in women.

Kazushi Tsuda, MD, FAHA
Ichiro Nishio, MD
Division of Cardiology
Department of Medicine
Wakayama Medical University
Wakayama, Japan

Hyperinsulinemia and Estrogen-Deficiency as Risk Factors for Stroke in Women
Kazushi Tsuda and Ichiro Nishio

Stroke. 2004;35:e134
doi: 10.1161/01.STR.0000126608.41606.5c
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2004 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/35/6/e134

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/