Air Pollution and Hospital Admissions for Ischemic and Hemorrhagic Stroke Among Medicare Beneficiaries

Gregory A. Wellenius, ScD; Joel Schwartz, PhD; Murray A. Mittleman, MD, DrPH

Background and Purpose—The association between short-term elevations in ambient air particles and increased cardiovascular morbidity and mortality is well documented. Ambient particles may similarly increase the risk of stroke.

Methods—We evaluated the association between daily levels of respirable particulate matter (aerodynamic diameter ≤10 μm, PM_{10}) and hospital admission for ischemic and hemorrhagic stroke among Medicare recipients (age ≥65 years) in 9 US cities using a 2-stage hierarchical model. In the first stage, we applied the time-stratified case-crossover design to estimate the effect of PM_{10} in each city. We used a 3-day unconstrained, distributed lag model to simultaneously estimate the effect of PM_{10} 0 to 2 days before the admission day and controlled for meteorological covariates in all of the models. In the second stage, we used random-effects metaanalytic techniques to combine the city-specific effect estimates.

Results—Ischemic (n=155,503) and hemorrhagic (19,314) stroke admissions were examined separately. For ischemic stroke, an interquartile range increase in PM_{10} was associated with a 1.03% (95% CI, 0.04% to 2.04%) increase in admissions on the same day only. Similar results were observed with CO, NO_{2}, and SO_{2}. For hemorrhagic stroke, no association was observed with any pollutant 0 to 2 days before admission.

Conclusions—These results suggest that elevations in ambient particles may transiently increase the risk of ischemic, but not hemorrhagic, stroke. Studies with more accurate assessment of timing of stroke onset are necessary to confirm or refute these findings. (Stroke. 2005;36:2549-2553.)

Key Words: ischemic stroke ■ hemorrhagic stroke ■ air pollution ■ environmental exposure ■ epidemiology

Epidemiological studies have demonstrated a consistent increased risk for cardiac morbidity and mortality associated with acute exposure to ambient air particles, including triggering of acute myocardial infarction,1,2 discharge of implanted cardioverter defibrillators,3 and hospital admission for acute decompensation of patients with congestive heart failure.4 Although the mechanisms have not been fully elucidated, current evidence suggests that alterations in hemodynamics,5,6 hemostatic factors,7-9 and autonomic function10,11 may underlie the cardiovascular effects of particulate air pollution.

Exposure to particulate air pollution may similarly increase the risk of stroke. Studies of small-area variation have found a positive association between stroke mortality rates and living in areas of high-ambient pollution.12 Time series studies using hospital discharge summaries report a statistically significant positive association between daily measures of respirable particles (particulate matter with aerodynamic diameter ≤10 μm, PM_{10}) and cerebrovascular hospitalizations,13-16 but the results have been inconsistent.17-19 Moreover, few studies have distinguished between ischemic and hemorrhagic strokes.15,16,20 Given the putative mechanisms of particulate-related cardiovascular effects, we hypothesized that short-term elevations in PM_{10} would be associated with increased hospitalizations for ischemic but not hemorrhagic stroke. We evaluated this hypothesis among Medicare beneficiaries ≥65 years of age in 9 US cities with daily PM_{10} monitoring.

Methods

Study Population

This study was approved by the Institutional Review Boards of the Harvard School of Public Health and Beth Israel Deaconess Medical Center. We evaluated the association between mean daily PM_{10} levels and the rate of admission for stroke among Medicare beneficiaries in 9 cities chosen a priori based on their large populations, many years of daily PM_{10} monitoring, and geographic diversity (Table 1). The observation period in each city was limited by the range of dates for which both hospital admissions and daily PM_{10} data were available.

We obtained information on hospital admissions from the Centers for Medicare and Medicaid Services. Ischemic stroke cases were defined as persons admitted from the emergency room with a primary discharge diagnosis of acute but ill-defined cerebrovascular...
disease or occlusion of cerebral arteries, excluding those without cerebral infarction.21 In a sensitivity analysis, we limited the definition of ischemic stroke to patients admitted from the emergency room with a primary discharge diagnosis of occlusion of cerebral arteries.21 Hemorrhagic stroke cases were defined as persons admitted from the emergency room with a primary discharge diagnosis of intracerebral hemorrhage.21

Exposure Information

We obtained daily measures of PM\textsubscript{10} and hourly measures of CO, NO\textsubscript{2}, and SO\textsubscript{2} from the US Environmental Protection Agency and computed daily mean concentrations in each city.22 To evaluate the effect of PM\textsubscript{10} within the range of exposure deemed acceptable in the United States under current regulations, we excluded from analysis 31 days (of 37 203 possible) on which PM\textsubscript{10} levels exceeded 150 g/m3, the current 24-hour US Environmental Protection Agency standard. We considered pollutant data unavailable for a given city if >10\% of days in the observation period had missing values. Using this criterion, data on CO was missing in New Haven, Conn; NO\textsubscript{2} in Birmingham, Ala, Salt Lake City, Utah, and Seattle, Wash; and SO\textsubscript{2} in Birmingham, Ala. We obtained National Weather Service data on climatologic variables (National Climatic Data Center) and calculated the apparent temperature (an index of human discomfort that incorporates ambient temperature and relative humidity) as described previously.24 In the first stage, we used the time-stratified case-crossover study design25 to separately estimate the effect of air pollution in each city. In this design, each subject’s exposure before a case-defining event (case period) is compared with his or her own exposure experience during noncase periods when the subject did not become a case. Control periods were chosen such that exposures during the case period were compared with exposures occurring on other days of the same month falling on the same day of the week as the case period. Exposure during the case period was defined as pollutant concentrations 0 to 2 days before admission (lags 0 to 2 days). This design has been shown to be effective in controlling for seasonality, time trends, and chronic and slowly varying potential confounders.24

We performed conditional logistic regression, stratifying on each day, to obtain estimates of odds ratios and 95\% CIs. We report effect estimates as the percentage of change in the rate of hospitalization associated with an interquartile range increase in mean daily pollutant levels. For each pollutant, we simultaneously evaluated the effect at lags of 0 to 2 days using unconstrained distributed lag models26 and controlled for meteorological covariates. We modeled the mean apparent temperature at lag 0 as a quadratic function and mean apparent temperature at lags 1 and 2, mean barometric pressure at lags 0 and 1, and pollutants at lags 0 to 2 as linear functions of continuous variables.

TABLE 1. No. of Hospital Admissions for Ischemic and Hemorrhagic Stroke Among Medicare Beneficiaries (age ≥65) in 9 US Cities During the Study Period

<table>
<thead>
<tr>
<th>City</th>
<th>County</th>
<th>Time Period</th>
<th>Person-Years (Thousands)*</th>
<th>Ischemic Cases</th>
<th>Hemorrhagic Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicago</td>
<td>Cook</td>
<td>5/1/1986–11/30/1999</td>
<td>8603</td>
<td>54 797</td>
<td>7182</td>
</tr>
<tr>
<td>Cleveland</td>
<td>Cuyahoga</td>
<td>10/1/1988–11/30/1999</td>
<td>2468</td>
<td>20 142</td>
<td>2298</td>
</tr>
<tr>
<td>Minneapolis</td>
<td>Hennepin, Ramsey</td>
<td>1/1/1987–12/31/1997</td>
<td>1940</td>
<td>6903</td>
<td>1119</td>
</tr>
<tr>
<td>Pittsburgh</td>
<td>Allegheny</td>
<td>1/1/1987–11/30/1999</td>
<td>2995</td>
<td>23 139</td>
<td>2590</td>
</tr>
<tr>
<td>Salt Lake City</td>
<td>Salt Lake</td>
<td>1/1/1986–11/30/1999</td>
<td>853</td>
<td>2559</td>
<td>380</td>
</tr>
<tr>
<td>Seattle</td>
<td>King</td>
<td>1/1/1986–12/31/1995</td>
<td>1671</td>
<td>7190</td>
<td>1078</td>
</tr>
<tr>
<td>Total</td>
<td>-</td>
<td></td>
<td>24 300</td>
<td>155 503</td>
<td>19 314</td>
</tr>
</tbody>
</table>

*Based on estimated no. of residents ≥65 years of age according to the US Bureau of the Census, 1990 Census of Population and Housing.

TABLE 2. Summary of Mean Daily Concentrations of Air Pollutants and Climatologic Variables in 9 US Cities

<table>
<thead>
<tr>
<th>Variable</th>
<th>10</th>
<th>25</th>
<th>50</th>
<th>75</th>
<th>90</th>
<th>Correlation With PM\textsubscript{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM\textsubscript{10}, g/m3</td>
<td>12.91</td>
<td>18.88</td>
<td>28.36</td>
<td>41.84</td>
<td>57.89</td>
<td>...</td>
</tr>
<tr>
<td>PM\textsubscript{10} with imputed values, g/m3</td>
<td>12.94</td>
<td>18.95</td>
<td>28.44</td>
<td>41.83</td>
<td>58.00</td>
<td>...</td>
</tr>
<tr>
<td>CO, ppm</td>
<td>0.54</td>
<td>0.73</td>
<td>1.02</td>
<td>1.44</td>
<td>1.98</td>
<td>0.43</td>
</tr>
<tr>
<td>NO\textsubscript{2}, ppb</td>
<td>13.71</td>
<td>18.05</td>
<td>23.54</td>
<td>29.98</td>
<td>36.54</td>
<td>0.53</td>
</tr>
<tr>
<td>SO\textsubscript{2}, ppb</td>
<td>2.17</td>
<td>3.57</td>
<td>6.22</td>
<td>10.26</td>
<td>16.17</td>
<td>0.39</td>
</tr>
<tr>
<td>Apparent temperature, °C</td>
<td>-3.93</td>
<td>0.95</td>
<td>9.47</td>
<td>19.33</td>
<td>25.42</td>
<td>0.22</td>
</tr>
</tbody>
</table>
In the second stage, we obtained a combined random-effects estimate from the city-specific effect estimates using standard random-effects meta-analysis methods.27 All of the reported P values are based on 2-sided tests at the α=0.05 level. Analyses were performed using SAS V9 and the R statistical package.

Results

Ischemic Stroke Admissions

There were 155,503 hospital admissions from the emergency department with a primary discharge diagnosis of ischemic stroke among Medicare beneficiaries ≥65 years of age in 9 US cities (Table 1). The overall mean PM10 level was 32.69 μg/m³ (SD±19.75; Table 2). Age on admission ranged from 65 to 117 years with a mean of 78.6±7.7 years. Cases were mostly white (75.4%) and female (60.7%).

We simultaneously estimated the effect of PM10 at lags of 0 to 2 days in each city and then obtained summary estimates using standard random-effects meta-analysis techniques. A positive association between PM10 and hospital admissions on the same day was observed in 7 of the 9 cities examined (Pheterogeneity=0.71; Figure, A). Overall, an interquartile range increase in PM10 on the day of admission was associated with a 1.03% (95% CI, 0.04% to 2.04%) increase in the rate of hospital admission for ischemic stroke. PM10 levels 1 or 2 days before admission were not associated with increased risk. Using the alternate definition of ischemic stroke yielded a 1.39% (95% CI, 0.26% to 2.52%) increase for an interquartile range increase in PM10 on the admission day and no significant increase associated with PM10 levels 1 or 2 days before admission. Using PM10 with imputed values as the exposure did not materially alter the results.

Ambient measures of CO, NO2, and SO2 were correlated with ambient PM10 levels (Table 2). An interquartile range increase in each pollutant was associated with a qualitatively similar increase in admissions on the same day (Table 3). No association was observed with any pollutant 1 or 2 days before the admission date.

Hemorrhagic Stroke Admissions

There were 19,314 hospital admissions with a primary discharge diagnosis of hemorrhagic stroke (Table 1). Compared with patients admitted for ischemic stroke, these patients tended to be younger (mean age, 77.9±7.6 years), more likely to be white (78.2%), and less likely to be female (58.8%).

PM10 levels on the day of admission were not associated with hemorrhagic stroke admissions although there was evidence of statistical heterogeneity between cities (Pheterogeneity=0.013; Figure, B). PM10 levels 1 to 2 days before admission were also not associated with increased risk. Likewise, no association was observed between hemorrhagic stroke admissions and PM10 with imputed values, CO, NO2, or SO2 (Table 3).

Discussion

Previous studies using administrative data from 1 to 3 cities suggest an association between daily fluctuations in PM10 and cerebrovascular hospital admissions.13–16 We evaluated the association between PM10 and hospital admissions for ischemic and hemorrhagic stroke among Medicare beneficiaries ≥65 years of age in 9 US cities and found that a transient increase in ambient particles was associated with an increased risk of hospital admission for ischemic but not hemorrhagic stroke. Specifically, for ischemic stroke, we found that an interquartile range increase in PM10 was associated with a 1.03% (95% CI, 0.04% to 2.04%) increase in the risk of admission on the same day. In contrast, for hemorrhagic stroke, we found no evidence of an association with PM10 or any other pollutant examined.

Few published studies have examined the effects of ambient particles specifically on ischemic or hemorrhagic stroke.15,16,20 Using hospital admission records from Taiwan,
Tsai et al.16 found a statistically significant positive association between PM\textsubscript{10} and both ischemic and hemorrhagic strokes after excluding days with mean daily temperature $<20^\circ\text{C}$. Similarly, Hong et al.30 analyzed death certificates in Seoul, Korea, with similar statistically significant results for ischemic and hemorrhagic stroke. Linn et al.15 also found a significant increase in hospitalization rates for ischemic stroke in metropolitan Los Angeles, but did not consider hemorrhagic strokes. The discrepant results in relation to hemorrhagic stroke may be explained by differences in case definitions, analytic methods, average pollutant levels, or population characteristics between the current and previous studies.

Exposure to ambient particles may plausibly increase the risk of ischemic stroke by promoting atherosclerotic plaque disruption and thrombosis. This could be mediated by a combination of ≥3 different mechanisms. First, particulate exposure can induce an acute systemic inflammatory response with an increased number of circulating neutrophils28 and increased levels of C-reactive protein.9 Second, particulate-related changes in hemostatic factors have been reported, including increased levels of fibrinogen7,8 and von Willebrand factor9 and enhanced peripheral arterial thrombosis.29 Third, particulate-related changes in autonomic nervous system activity, as assessed by heart rate variability, are well documented and are consistent with relative sympahtoexcitation.10,11

The observed association between ischemic stroke and air pollution was similar for all of the pollutants considered. Likewise, we consistently failed to find evidence of an association between hemorrhagic stroke and any pollutant considered. Because ambient measures are correlated, separating the effects of individual pollutants is problematic. However, PM\textsubscript{10} is relatively spatially homogenous within a metropolitan area,30 and ambient measures at a central site are well correlated with personal exposure measures.31 In contrast, personal exposures to CO, NO\textsubscript{2}, and SO\textsubscript{2} are relatively poorly predicted by ambient measures.32 For example, ambient measures of NO\textsubscript{2} are likely more strongly correlated with personal exposure to particulate matter than to personal NO\textsubscript{2} exposure.32 Thus, the present study is consistent with the interpretation that sources of pollution that lead to concurrent elevation of these pollutants may be responsible for the observed associations.

The health effects of exposure to air pollution from indoor sources (eg, from tobacco smoke or cooking) are also of interest, but evaluating these effects requires a different study design and indoor, as well as ambient, pollutant monitors. Although ambient particles have been shown to penetrate indoors, there is little correlation between exposure to particles originating from indoor sources and those from outdoor sources.33

This study has several potential limitations. First, misclassification of the outcome is expected as a result of diagnostic or coding errors. However, these errors are likely unrelated to pollutant levels and are expected to reduce the precision of our estimates and potentially bias the relative risk toward the null. In fact, using the alternate definition of ischemic stroke, which is likely to be more specific, albeit less sensitive, than the primary definition,34,35 we found a stronger association with PM\textsubscript{10}. Similarly, we expect that the incidence of clinically unrecognized or nonhospitalized stroke is unrelated to pollutant levels after adjusting for meteorological covariates and month-of-year and day-of-week effects. Therefore, exclusion of these cases is expected to reduce the precision of our estimates but not otherwise bias our results. Second, the use of ambient rather than personal exposure measures is expected to result in exposure misclassification. However, this misclassification is expected to lead one to underestimate the relative risk.36 Third, the date of symptom onset likely preceded the date of admission in a proportion of cases, leading to nondifferential exposure misclassification and bias of the relative risk toward the null. Fourth, residual confounding by short-term respiratory epidemics remains a possibility. However, the time-stratified case-crossover design used in this study has been shown to effectively control for confounding by time trends in both exposure and outcomes.24 In particular, this approach provides effective control for time trends that occur over periods longer than 1 calendar month. Additionally, studies directly examining this possibility suggest that respiratory epidemics are not important confounders of the association between particulate matter and all-cause or cardiovascular mortality.37

Conclusions

In the current study, we found that a transient increase in ambient particles was associated with an increased risk of hospital admission for ischemic but not hemorrhagic stroke.
Although the relative increase in risk was small, given the large number of people simultaneously at risk for ischemic stroke and exposed to urban pollution, even a small relative risk may be of significant public health interest. Additional studies with more detailed data on the clinical characteristics of subjects and more accurate assessment of the timing of symptom onset are needed to confirm or refute these findings.

Acknowledgments
This study was supported by grants ES013804, HL07374, and ES09825 from the National Institutes of Health and by US Environmental Protection Agency research award R827353 from the US Environmental Protection Agency.

References

Wellenius et al Air Pollution and Stroke 2553

Air Pollution and Hospital Admissions for Ischemic and Hemorrhagic Stroke Among Medicare Beneficiaries

Gregory A. Wellenius, Joel Schwartz and Murray A. Mittleman

Stroke. 2005;36:2549-2553; originally published online October 27, 2005;
doi: 10.1161/01.STR.0000189687.78760.47
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2005 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/36/12/2549

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Stroke* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Stroke* is online at:
http://stroke.ahajournals.org//subscriptions/