Promoter Polymorphisms in the Nitric Oxide Synthase 3 Gene Are Associated With Ischemic Stroke Susceptibility in Young Black Women

Timothy D. Howard, PhD; Wayne H. Giles, MD, MPH; Jianfeng Xu, MD, DrPH; Marcella A. Wozniak, MD, PhD; Ann M. Malarcher, PhD, MSPH; Leslie A. Lange, PhD; Richard F. Macko, MD; Monica J. Basehore, Deborah A. Meyers, PhD; John W. Cole, MD; Steven J. Kittner, MD, MPH

Background and Purpose—Endothelial nitric oxide exerts a variety of protective effects on endothelial cells and blood vessels, and therefore the nitric oxide synthase 3 gene (NOS3) is a logical candidate gene for stroke susceptibility.

Methods—We used the population-based Stroke Prevention in Young Women case-control study to assess the association of five NOS3 polymorphisms in 110 cases (46% black) with ischemic stroke and 206 controls (38% black), 15 to 44 years of age. Polymorphisms included 3 single nucleotide polymorphisms (SNPs) in the promoter region (−1468 T>A, −922 G>A, −786 T>C), 1 SNP in exon 7 (G894T), and 1 insertion/deletion polymorphism within intron 4.

Results—Significant associations with both the −922 G>A and −786 T>C SNPs with ischemic stroke were observed in the black, but not the white, population. This association was attributable to an increased prevalence of the −922 A allele (OR=3.0, 95% CI=1.3 to 6.8; P=0.005) and the -786 T allele (OR=2.9, 95% CI=1.3 to 6.4; P=0.005) in cases versus controls. These 2 SNPs were in strong linkage disequilibrium (D′=1.0), making it impossible to determine, within the confines of this genetic study, whether 1 or both of these polymorphisms are functionally related to NOS3 expression. Two sets of haplotypes were also identified, 1 of which may confer an increased susceptibility to stroke in blacks, whereas the other appears to be protective.

Conclusion—Promoter variants in NOS3 may be associated with ischemic stroke susceptibility among young black women. (Stroke. 2005;36:1848-1853.)

Key Words: genetics ■ nitric oxide ■ women and minorities ■ young, stroke in...

Familial aggregation and twin studies provide evidence for a strong genetic component to ischemic stroke risk, particularly for early-onset cases.1-6 Endothelial nitric oxide synthase (NOS3) is a logical candidate gene because of its ability to generate NO, which plays a central role in the maintenance of vascular homeostasis, including regulation of the cerebral circulation. NO is also a potent vasodilator7 and inhibits platelet aggregation.8 Impaired endothelial-mediated vasodilation is a common feature of many vascular risk factors, and experimental evidence strongly supports a role for impaired NO-dependent vasomotor reactivity in the pathophysiology of stroke.9,10

Association Studies with NOS3 and ischemic stroke have been conducted exclusively in older populations and typically included only 1 or a few SNPs genotyped in various ethnic groups.11-13 These studies have yielded conflicting results. To further characterize the role of NOS3 in ischemic stroke, we evaluated 5 polymorphisms among black and white cases and controls in the Stroke Prevention in Young Women Study (SPYW).

Materials and Methods

Population

The SPYW study is a population-based, case-control study initiated to examine risk factors for ischemic stroke. Both cases and their comparison group (controls) were identified from a study area that included all of Maryland except the far Western panhandle, Washington DC, and southern portions of both Pennsylvania and Delaware. Cases and controls were recruited between February 26, 1992 and January 1, 1996. Institutional review committees at collaborating institutions approved the study and participants gave informed consent.

See Editorial Comment, pg 1852
TABLE 1. Clinical Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Cases</th>
<th>Controls</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample size</td>
<td>110</td>
<td>206</td>
<td></td>
</tr>
<tr>
<td>Blacks, no. (%)</td>
<td>51 (46)</td>
<td>79 (38)</td>
<td></td>
</tr>
<tr>
<td>Whites, no. (%)</td>
<td>59 (54)</td>
<td>127 (62)</td>
<td></td>
</tr>
<tr>
<td>Median age, y</td>
<td>39</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>High blood pressure, %</td>
<td>27</td>
<td>14</td>
<td>0.004</td>
</tr>
<tr>
<td>Diabetes, %</td>
<td>15</td>
<td>4</td>
<td>0.0003</td>
</tr>
<tr>
<td>High blood cholesterol, %</td>
<td>17</td>
<td>18</td>
<td>NS</td>
</tr>
<tr>
<td>Current smoking, %</td>
<td>43</td>
<td>29</td>
<td>0.007</td>
</tr>
</tbody>
</table>

NS indicates not significant.

The baseline characteristics of the SPYW population are shown in Table 1. Cases (51 black, 59 white) were women 15 to 44 years of age with a first cerebral infarction, who were identified by discharge surveillance at all 59 hospitals in the study area or through direct referral by regional neurologists. All stroke cases were adjudicated by 2 neurologists. The methods for discharge surveillance, chart abstraction, case adjudication, and assignment of probable and possible underlying causes have been described previously. Recruitment within 1 year of stroke was required for participation. Controls (78 black, 128 white) were identified by random-digit dialing and included women without a history of stroke, frequency matched by age and geographic region of residence to the cases.

Hypertension, diabetes mellitus, and angina or myocardial infarction were determined by asking the participant (or her proxy when the participant was unable to answer) whether she had ever been told by a physician that she had the condition. Similarly, age, race, and current smoking status were determined by participant or proxy report. Total cholesterol was measured according to standard practice.

Genotyping of NOS3 Polymorphisms

The -1468 T>A, -922 G>A, and -786 T>C single nucleotide polymorphisms (SNPs) were genotyped using the MassARRAY genotyping system (Sequenom, Inc, San Diego, Calif). For the intron 4 tandem repeat, polymerase chain reaction was performed followed by separation on 2% agarose gels. The exon 7 SNP was genotyped by polymerase chain reaction followed by restriction fragment length polymorphism analysis using the enzyme BanII.

Genetic Analysis

Each of the biallelic polymorphisms was analyzed by comparing differences in genotype frequencies between cases and controls, stratified by race. χ² tests assuming a recessive model were performed in instances where only a small number of homozygotes existed for the rare allele. Hardy–Weinberg equilibrium and intermarker linkage disequilibrium (LD) was calculated using SnpAnalyzer, an enhanced, Web-based version of the SNP-Analysis package (Kruglyak available at http://www.fhcrc.org/labs/kruglyak/Downloads). Haplotypes were determined using the PHASE computer program.

Results

Five polymorphisms in NOS3 were examined (Figure). All SNPs were in Hardy–Weinberg equilibrium. Using multiple pair-wise tests, significant LD was observed between four genotyped polymorphisms in the white population (D²=0.79 to 1.00). Lower D² values were observed between all SNPs and G894T (D²=0.41 to 0.76). However, in the black population, only the promoter SNPs were in LD with each other (D²=0.82 to 1.00).

Two promoter SNPs, -922 G>A and -786 T>C, were significantly associated with stroke susceptibility in blacks when compared by genotype and allele (P=0.005 to 0.017; Table 2). The odds ratio for blacks was 3.0 (95% CI, 1.3 to 6.8) with the -922 AA genotype and 2.9 (95% CI, 1.3 to 6.4) with the -786 TT genotype. This association was independent of hypertension status, because stroke susceptibility was still significantly associated after adjusting for this dichotomous variable (P=0.030). No significant associations were observed with interaction analysis with “current smoking” status in either population.

Inspection of haplotypes revealed that the same haplotype was most common in both blacks and whites (TATbG; Table 3). One haplotype was significantly different between black cases and controls. This haplotype, AGCaG, was not observed in any cases but was observed in 8% (n=13) of control participants (P=0.001). Further inspection of haplotypes revealed potential “risk” and “protective” haplotypes, if 1 or 2 SNPs were ignored. For example, the TATxG haplotype (where x is any allele) occurred in 59% of the black cases versus 44% of controls (P=0.02). Conversely, the AGCxG haplotype occurred in 10% of black cases versus 24% of controls (P=0.004).

Discussion

NO is an important and well-characterized vasodilator, with homeostasis of NO essential in maintaining vascular tone in the systemic and cerebral circulation. We observed significant associations with the -922 and -786 promoter SNPs of the NOS3 gene and susceptibility to stroke in black women. Black women with the risk genotype for either SNP (-922 AA or -786 TT) had ≈3× the risk of stroke compared with women with the alternative genotypes. This effect was not observed in the white women.

There is a paucity of comparable data by which to assess our main finding that black women with the risk genotypes were at an increased risk of stroke. Two British studies have examined the association of NOS3 polymorphisms with stroke in elderly white populations. In an earlier study, the exon 7 G894T SNP was not found to be associated with a combined case population of ischemic stroke and transient ischemic attacks, nor with the degree of carotid stenosis.a A subsequent study by the same group found an association between -786 T>C and intron 4 insertion/deletion haplo-
TABLE 2. Analysis of Stroke Susceptibility and NOS3 Genotypes

<table>
<thead>
<tr>
<th>Genotype, P value</th>
<th>Genotype, P value</th>
<th>Genotype, P value</th>
<th>Genotype, P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.95</td>
<td>0.66</td>
<td>0.54</td>
<td>0.86</td>
</tr>
<tr>
<td>0.54</td>
<td>0.88</td>
<td>0.84</td>
<td>0.91</td>
</tr>
<tr>
<td>0.0093</td>
<td>0.017</td>
<td>0.12</td>
<td>0.14</td>
</tr>
<tr>
<td>0.005</td>
<td>0.005</td>
<td>0.79</td>
<td>0.14</td>
</tr>
</tbody>
</table>

n indicates number of haplotypes. *P=0.001.

TABLE 3.

<table>
<thead>
<tr>
<th>Haplotype No.</th>
<th>Haplotype</th>
<th>White Cases (n=118)</th>
<th>White Controls (n=254)</th>
<th>Black Cases (n=102)</th>
<th>Black Controls (n=158)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AAATG</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>AAATG</td>
<td>0.02</td>
<td>0.19</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>AAATbG</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>AAATbG</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>AGCaG</td>
<td>0.14</td>
<td>0.13</td>
<td>0.08*</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>AGCaT</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>AGCaG</td>
<td>0.03</td>
<td>0.03</td>
<td>0.06</td>
<td>0.08</td>
</tr>
<tr>
<td>8</td>
<td>AGCbT</td>
<td>0.20</td>
<td>0.23</td>
<td>0.04</td>
<td>0.08</td>
</tr>
<tr>
<td>9</td>
<td>TATbG</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>TATbG</td>
<td>0.01</td>
<td>0.09</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>TATbG</td>
<td>0.51</td>
<td>0.48</td>
<td>0.46</td>
<td>0.39</td>
</tr>
<tr>
<td>12</td>
<td>TATbG</td>
<td>0.10</td>
<td>0.09</td>
<td>0.06</td>
<td>0.08</td>
</tr>
<tr>
<td>13</td>
<td>TATbG</td>
<td>0.04</td>
<td>0.04</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>TGCbG</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

n indicates number of haplotypes. *P=0.001.
Acknowledgments

This work was supported, in part, by the Office of Research and Development, Medical Research Service and the Research Enhancement Award Program in Stroke, Department of Veterans Affairs; a Cooperative Agreement with the Cardiovascular Health Branch, Division of Adult and Community Health, Centers for Disease Control and Prevention; the National Institute of Neurological Disorders and Stroke and the NIH Office of Research on Women’s Health (R01 NS45012); the National Institute on Aging (NIA) Pepper Center grant P60 12583; and University of Maryland General Clinical Research Center grant M01 RR 165001, General Clinical Research Centers Program, National Center for Research Resources, NIH.

We are indebted to the following members of the Stroke Prevention in Young Women research team for their dedication: Kathleen Cauho, Ann Maher, Mary J. Sparks, Nancy Zappala and Lilly Zheng. We appreciate the assistance of the following individuals who have supported the Stroke Prevention in Young Women Study at their institution: Frank Anderson, MD; Clifford Andrew, MD, PhD; Christopher Bever, MD; David Buchholz, MD; Nicholas Buendia, MD; Young Ja Cho, MD; James Christensen, MD; Remzi Demir, MD; Terry Detrich, MD; Christopher Earley, MD; John Eckholdt, MD (Deceased); Nirmala Fernback, MD (Deceased); Jerold Fleishman, MD; Benjamin Frishberg, MD; Stuart Goodman, MD, PhD; Norman Hershkowitz, MD, PhD; Constance Johnson, MD; Luke Kao, MD, PhD; Mehrullah Khan, MD; Ramesh Khurana, MD; John Kurtzke, MD; William Leabhy, MD; William Lightfoote, IL, MD; Bruce Lobay, MD; Michael Miller, MD, PhD; Harshad Mody, MBBS; Marvin Mordes, MD; Seth Morgan, MD; Howard Moses, MD; Sivarama Nandipati, MD; Mark Ozer, MD; Roger Packer, MD; Thaddeus Pula, MD; Phillip Pulaski, MD; Nahghushan Rao, MD; Marc Raphaelson, MD; Solomon Robbins, MD; David Satinsky, MD; Elijah Saunders, MD; Michael Sellman, MD, PhD; Arthur Siebens, MD (Deceased); Barney Stern, MD; Harold Stevens, MD, PhD; Dean Tippett, MD; Roger Weir, MD; Michael Weinrich, MD; Richard Weisman, MD; Robert Wityk, MD; Don Wood, MD (Deceased); Robert Varpipaa, MD; and Mohammed Yaseen, MD.

In addition, the study could not have been completed without the support from the administration and medical records staff at the following institutions: In Maryland, Anne Arundel Medical Center, Atlantic General Hospital, Bon Secours Hospital, Calvert Memorial Hospital, Carroll County General, Church Hospital Corporation, Department of Veterans Affairs Medical Center in Baltimore, Doctors Community Hospital, Dorchester Hospital, Fallston General Hospital, Franklin Square Hospital Center, Frederick Memorial Hospital, The Good Samaritan Hospital of Maryland, Inc, Greater Baltimore Medical Center, Harbor Hospital Center, Hartford Memorial Hospital, Holy Cross Hospital, Johns Hopkins Bayview, Inc., The Johns Hopkins Hospital, Howard County General Hospital, Inc. Kennedy Krieger Institute, Kent and Queen Anne Hospital, Laurel Regional Hospital, Liberty Medical Center, Inc., Maryland General Hospital, McCready Memorial Hospital, Memorial Hospital at Easton, Mercy Medical Center, Montebello Rehabilitation Hospital, Montgomery General Hospital, North Arundel Hospital, Northwest Hospital Center, Peninsula Regional Medical Center, Physician’s Memorial Hospital, Prince George’s Hospital Center, Saint Agnes Hospital, Saint Joseph Hospital, Saint Mary’s Hospital, Shady Grove Adventist Hospital, Sinai Hospital of Baltimore, Southern Maryland Hospital Center, Suburban Hospital, The Union Memorial Hospital, Union Hospital Cecil County, University of Maryland Medical System, Washington Adventist Hospital and Washington County Hospital; in Washington DC: Children’s National Medical Center; District of Columbia General Hospital; The George Washington University Medical Center; Georgetown University Hospital; Greater Southeast Community Hospital; Hadley Memorial Hospital; Howard University Hospital; National Rehabilitation Hospital; Providence Hospital; Sibley Memorial Hospital; Veteran’s Affairs Medical Center; and the Washington Hospital Center; in Pennsylvania: Gettysburg Hospital and Hanover General Hospital.

References

None of us in stroke management regret the passage of the "diagnose and adios" era, humorously criticized earlier. We know well that opportunities for stroke management are arising for more definitive studies. A revolution in imaging, the rush to apply results from clinical trials, and attempts to shorten the time frame for action are daily practice because neurologists are interventionists similar to their colleagues in cardiology and emergency medicine. However, with the pace of accumulated data from leisurely approached genetic association studies, we confront the issue of hereditary risk factors.

In this issue of Stroke, Howard et al report on a well-organized, population-based study in 15- to 44-year-old women. Among the 5 nitric oxide synthase (NOS)3 polymorphisms in 110 cases (46% black) with ischemic stroke and 206 controls (38% black) who were recruited over 4 years, these investigators found that the −922 G/A and −786 T/C polymorphisms may be associated with ischemic stroke susceptibility among young black women. Although the small sample size precluded extensive analysis, this study highlights the importance of genetic studies of stroke at a young age in different ethnic groups.

Genetic factors may play a role in cerebral vascular disease and may act via endothelial dysfunction, predominantly in the young. NO synthesized by endothelial NOS is a key mediator of endothelial function, and it could be a candidate gene for stroke. The NOS3 intron 4ab insertion/deletion genotype, but not the −786 T/C or the G894T genotype, was reported to be associated with isolated lacunar infarction in an English study but not a Japanese study. The NOS3 exon 7 polymorphism (G894T) was reported to not be associated with stroke and transient ischemic attack or the degree of carotid stenosis in patients with cerebrovascular disease. The aforementioned results show that the association between the NOS gene and ischemic stroke is controversial and that there is a possible positive association between the NOS3 intron 4ab insertion/deletion genotype and small-vessel disease in white populations or a possible negative association in other ethnicities.

It is known that the etiology of ischemic stroke in the young is heterogeneous and diverse and that there might be racial differences. Previous reports regarding ischemic stroke in the young showed that blacks, unlike whites, more commonly had the stroke subtype of small-vessel occlusion than large-artery atherosclerosis and that strokes due to other determined and undetermined causes occurred in more than half of young stroke patients in most studies. The finding that the −922 G/A and −786 T/C polymorphisms may be associated with ischemic stroke susceptibility among young black women should be confirmed in a large, international, cooperative study. The population-based study design of Howard et al yielded important information, but the phenotype approach to the study of stroke, as designed by Hassan et al, might provide other useful data. Before international cooperative studies are organized, several methodologic problems need to be solved.

We earnestly agree that those studies, which described lacunar infarcts beyond Fisher's early observations, had methodological limitations: sample sizes were generally small; risk factors were inconsistently defined; and studies used a variety of classification methods to define ischemic stroke subtypes. Attempts to refine the stroke subtype classification are worth anticipating. However, efforts to define reproducible subtype classifications of lacunar infarcts or small-vessel occlusion are mandatory for future gene association studies.

Next, the study sample size must be carefully calculated. A small sample size may preclude assessment of any genetic association by stroke subtype, race, or sex and may limit the power of detecting interactions among common risk factors for stroke. Even more, partial digestion might be common in restriction fragment length polymorphism studies; although results of 0% for rare alleles might indicate a very low frequency, they might still exist in the population. Furthermore, conclusions drawn from such "nonesistent" alleles may be misleading. At present, a large, multiethnic, population-based study to explore differences in genetics by association studies might not be feasible because the parameters to generate hypotheses are lacking. We need more high-quality genetic descriptions from stroke-prone areas of persons with early-onset stroke, such as Asia, Russia, and Africa, with different environmental exposures and different non-NOS3 genetic backgrounds.

We agree that genetics has revolutionized neurologic research. Ironically, however, it is not known how many single-nucleotide polymorphisms would be sufficient for such a project. Genetic studies are time consuming and costly, not to mention the pricey proteomics methods afterward. Genomics might be more appealing for winning grants at universities, an approach that may be useful to the faculty to popularize study proposals but that may not have sufficient power to determine whether a true functional polymorphism exists, let alone a correlation between the polymorphism and patient outcomes.

The results of Howard et al, although inconclusive, point out the many challenges of genetic studies in ethnically different populations. With more understanding of these genetic differences that are not yet modifiable, we may be caught in another unavoidable "diagnose and adios" era.
Ku-Chou Chang, MD, Guest Editor
Assistant Professor of Neurology
Department of Neurology, Chang Gung Memorial Hospital
Kaohsiung, Taiwan Medical College
Chang Gung University, Taiwan

References

Key Words: genetics ■ stroke management ■ treatment outcome
Promoter Polymorphisms in the Nitric Oxide Synthase 3 Gene Are Associated With Ischemic Stroke Susceptibility in Young Black Women
Timothy D. Howard, Wayne H. Giles, Jianfeng Xu, Marcella A. Wozniak, Ann M. Malarcher, Leslie A. Lange, Richard F. Macko, Monica J. Basehore, Deborah A. Meyers, John W. Cole and Steven J. Kittner

Stroke. 2005;36:1848-1851; originally published online August 11, 2005; doi: 10.1161/01.STR.0000177978.97428.53

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2005 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/36/9/1848

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/