Elevations in Preoperative Monocyte Count Predispose to Acute Neurocognitive Decline After Carotid Endarterectomy for Asymptomatic Carotid Artery Stenosis

J. Mocco, MD; David A. Wilson, BS; Andrew F. Ducruet, MD; Ricardo J. Komotar, MD; William J. Mack, MD; Joseph Zurica, BA; Robert R. Sciaccia, EngScD; Eric J. Heyer, MD, PhD; E. Sander Connolly, MD

Background and Purpose—Although the incidence of major stroke attributable to carotid endarterectomy (CEA) is low (1% to 2%), ~25% of patients experience subtle postoperative neurocognitive dysfunction. This study examines whether preoperative leukocyte profiles predict cognitive outcome in asymptomatic CEA patients.

Methods—Sixty-nine asymptomatic CEA patients underwent neuropsychometric testing preoperatively and on postoperative day 1 (POD1). Preoperative white blood cell counts and differentials were obtained. Logistic regression was performed for risk factors for neurocognitive decline. Variables achieving univariate $P<0.10$ were included in multivariate analysis.

Results—Eighteen (26%) patients experienced neurocognitive decline on POD1; multivariate analysis demonstrated that preoperative monocyte count ($P=0.011$) and age ($P=0.02$) independently predicted outcome.

Conclusions—Preoperative monocyte count and age are independently associated with acute neurocognitive decline after CEA for asymptomatic stenosis. (Stroke. 2006;37:240-242.)

Key Words: carotid endarterectomy ■ ischemia ■ neuropsychology

Carotid endarterectomy (CEA) prevents stroke in appropriately selected patients with asymptomatic carotid artery stenosis.1 Although the incidence of major stroke after CEA is low, recent studies suggest that a battery of neuropsychometric tests (NPMTs) detects subtle neurocognitive deficits in ~25% of patients postoperatively.2 Evidence indicates this decline may be ischemic in nature, caused by dislodged microemboli or transient cerebral hypoperfusion during endarterectomy.3 Studies demonstrate that leukocyte count independently predicts ischemic risk.4,5 We hypothesized that a preoperative proinflammatory state increases risk of acute neurocognitive decline after CEA by rendering cerebral tissue vulnerable to ischemic injury, or indicating plaque instability.6,7 This study prospectively evaluates the predictive value of preoperative leukocyte profiles in an asymptomatic CEA cohort.

Methods

Study Cohort

Sixty-nine prospectively enrolled patients with preoperative white blood cell (WBC) counts/differentials underwent CEA for asymptomatic carotid artery stenosis in this institutional review board–approved study. Patients were enrolled in an ongoing NPMT investigation; data from 37 patients were analyzed in a previous NPMT study.2 No subjects underwent previous ipsilateral endarterectomy.

Anesthesia/Surgery

All patients received general anesthesia with routine monitoring/ intraoperative electroencephalography, as described previously.2 One patient was selectively shunted. Surgical times averaged 149.0±43 minutes.

NPMTs/Statistics

Patients were assessed preoperatively and on postoperative day 1 (POD1) using a battery of 5 NPMTs (Boston Naming, Halstead-Reitan Trails A/B, Controlled Oral Word Association, and Copy Portion of Rey Complex Figure). Tests were scored individually for CEA and control (56 contemporaneous lumbar laminectomy) patients. Changes in individual test scores were converted to z-scores as described previously.2 Neurocognitive decline was defined as scores >2 SD above mean total cognitive changes of controls. NPMT outcomes were expressed as dichotomous variables (“injured”/“uninjured”).

Univariate logistic regression was performed for variables in the left column of Table 1. Variables achieving univariate $P<0.10$ were included in multivariate analysis using logistic regression with a backward selection process. Data are presented as odds ratio per SD increase in cell count for white cell data and per year for age. The remaining risk factors are presented as categorical variables, with odds ratios representing risk of having the condition. All data are
expressed as mean±SD (odds ratio, 95% CI, P value) or with
P<0.05 considered significant.

Results

Cohort Characteristics

Demographic/intraoperative variables for CEA and control
patients are presented in Table 2. Eighteen (26%) patients
experienced neurocognitive decline on POD1. There was no
significant difference in age or anesthesia between the experi-
mental/control groups or percent ipsilateral carotid stenosis
between the injured/uninjured cohorts. No patients experi-
enced radiographically/clinically apparent major postopera-
tive stroke.

Statistics

Leukocyte analysis demonstrated no statistically significant
differences between injured/uninjured groups, with the ex-
ception of monocytes. Mean preoperative monocyte counts
were 0.70±0.19 cells/nL in the injured and 0.52±0.18
cells/nL in the uninjured group (P<0.001).

Univariate analysis demonstrated a 12% increased risk of
neurocognitive injury (1.12, 1.02 to 1.22, 0.02) for each year
age increase. Each SD increase in monocyte count (SD=0.20
cells/nL) resulted in a 179% increase risk of neurocognitive
injury (2.97, 1.46 to 5.35, 0.002). Neutrophil count trended
toward significance in univariate analysis (1.64, 0.96 to 2.80,
0.07). Lymphocyte count and other stroke risk factors did not
reach significance (P<0.10). Total WBC count was not
included in the multivariate analysis because of high corre-
lation with neutrophil count (Pearson correlation r=0.89;
P<0.0001).

Multivariate analysis included age, monocyte, and neutro-
phil count (Table 1). Age was predictive of outcome (1.12,
1.02 to 1.24, 0.02). Monocyte count remained highly signific-
ant (2.37, 1.21 to 4.62, 0.01), and neutrophil count a
borderline predictor (1.78, 0.97 to 3.27, 0.06).

TABLE 1. Risk Factors for Neurocognitive Decline After CEA. Logistic Regression

<table>
<thead>
<tr>
<th>Patients (n)</th>
<th>Injured</th>
<th>Uninjured</th>
<th>OR</th>
<th>95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>75.2±5.3</td>
<td>69.2±8.5</td>
<td>1.12#</td>
<td>(1.02, 1.24)</td>
<td>0.02*</td>
</tr>
<tr>
<td>Male gender</td>
<td>9 (50%)</td>
<td>32 (63%)</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Obesity*</td>
<td>2 (11%)</td>
<td>9 (18%)</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Smoking</td>
<td>12 (67%)</td>
<td>32 (63%)</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Hypertension†</td>
<td>11 (61%)</td>
<td>39 (76%)</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>4 (28%)</td>
<td>11 (22%)</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Hypercholesterolemia‡</td>
<td>11 (61%)</td>
<td>28 (55%)</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Statin medication</td>
<td>11 (61%)</td>
<td>20 (40%)</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Previous myocardial infarction</td>
<td>4 (22%)</td>
<td>18 (35%)</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Previous contralateral CEA</td>
<td>0 (0%)</td>
<td>5 (10%)</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Right operative side</td>
<td>10 (55%)</td>
<td>20 (39%)</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Duration of surgery</td>
<td>146.8±43.4</td>
<td>148.7±54.5</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Duration of cross-clamp</td>
<td>79.8±15.7</td>
<td>43.3±19.8</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Duration of cross-clamp</td>
<td>19.8±7.4</td>
<td>71.9±8.4</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Neutrophil count</td>
<td>5.13±1.44</td>
<td>4.33±1.54</td>
<td>1.78**</td>
<td>(0.97, 3.27)</td>
<td>0.06</td>
</tr>
<tr>
<td>Monocyte count</td>
<td>0.70±0.19</td>
<td>0.52±0.18</td>
<td>2.37**</td>
<td>(1.21, 4.62)</td>
<td>0.01*</td>
</tr>
<tr>
<td>Lymphocyte count</td>
<td>1.84±0.57</td>
<td>1.86±0.95</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

*Obesity = body mass index >30; †hypertension = systolic blood pressure >140 and/or use of antihypertensives; ‡hypercholes-
terolemia=cholesterol >200 and/or use of anticholesterol medication; odds ratios, CIs, and P values presented apply to multivariate
logistic regression; #Age odds ratio: per year increase; **monocyte/neutrophil ORs: per SD increase in cell count (monocyte: 0.20
cells/mL; neutrophils: 1.5 cells/mL); no other variables achieved criteria for inclusion in multivariate analysis; continuous data presented
as mean±SD.

TABLE 2. Demographic/Intraoperative Parameters

<table>
<thead>
<tr>
<th>Patients (n)</th>
<th>CEA</th>
<th>Spine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td>70.8±8.2</td>
<td>71.9±7.4</td>
</tr>
<tr>
<td>Male gender (%)</td>
<td>41 (59%)</td>
<td>33 (59%)</td>
</tr>
<tr>
<td>Obesity* (%)</td>
<td>11 (16%)</td>
<td>4 (7%)</td>
</tr>
<tr>
<td>Diabetes mellitus (%)</td>
<td>16 (23%)</td>
<td>4 (7%)</td>
</tr>
<tr>
<td>Hypertension† (%)</td>
<td>50 (72%)</td>
<td>31 (55%)</td>
</tr>
<tr>
<td>Hypercholesterolemia‡ (%)</td>
<td>39 (56%)</td>
<td>14 (25%)</td>
</tr>
<tr>
<td>Previous myocardial infarction (%)</td>
<td>22 (32%)</td>
<td>8 (14%)</td>
</tr>
<tr>
<td>Previous contralateral CEA (%)</td>
<td>5 (7%)</td>
<td>2 (4%)</td>
</tr>
<tr>
<td>Duration of surgery (min)</td>
<td>146.8±43.4</td>
<td>148.7±54.5</td>
</tr>
<tr>
<td>Fentanyl (µg/kg)</td>
<td>2.4±1.4</td>
<td>2.4±1.1</td>
</tr>
<tr>
<td>Midazolam (mg/kg)</td>
<td>0.04±0.01</td>
<td>0.03±0.01</td>
</tr>
</tbody>
</table>

*Obesity = BMI >30; †hypertension = SBP >140/use of antihyper-
tensives; ‡hypercholesterolemia = cholesterol >200/use of anticholesterol medication.
Discussion
Preoperative monocyte count and age independently predict acute neurocognitive outcome after CEA for asymptomatic stenosis. These associations persist when accounting for conventional stroke risk factors, including smoking, which is known to elevate WBC counts.

Acute post-CEA neurocognitive dysfunction is believed to be ischemic in nature attributable to cerebral hypoperfusion or microembolization of plaque. Previous work demonstrates an association between impaired post-CEA NPMT performance and elevated serum levels of S100b, a marker of glial cell death, supporting this hypothesis. NPMT testing offers a more detailed assessment of higher cortical functioning than traditional neurological examination. Thus, patients may experience cognitive decline attributable to subtle ischemia without the traditional radiographic or clinical characteristics of major stroke.

Our findings suggest an inflammatory component to acute post-CEA cognitive dysfunction. Atherosclerosis is viewed as a chronic inflammatory condition, with monocyte activation and infiltration implicated as initiating events, and plaque macrophage content independently associated with instability. Elevated preoperative monocyte counts may therefore indicate the presence of unstable plaque more prone to microembolize during CEA. Furthermore, a role for monocytes in stroke, independent of atherosclerosis, has been suggested. Interleukin-8, a monocyte release product, is elevated after stroke and serves as a strong neutrophil chemoattractant. This may “prime” patients for acute ischemic post-CEA neurocognitive decline by creating a favorable environment for neutrophil recruitment after disrupted cerebral blood flow during surgery.

Further investigation is necessary to elucidate the mechanisms linking elevated monocyte counts with acute post-CEA cognitive dysfunction. Although previous data suggest that the majority of these patients will continue to experience impaired NPMT performance at 1 month, additional investigations assessing the association of monocyte counts and delayed post-CEA cognitive decline are warranted.

Acknowledgments
J.M. was supported by the Congress of Neurological Surgeons Wilder Penfield Clinical Research Fellowship. D.A.W. was supported by a Doris Duke Clinical Research Fellowship. R.J.K. was supported by an National Institutes of Health T32 Fellowship. E.J.H. and E.S.C. were supported by NIA (RO1 AG17604-02) grant and Herbert Irving Clinical Research Center.

References
Elevations in Preoperative Monocyte Count Predispose to Acute Neurocognitive Decline After Carotid Endarterectomy for Asymptomatic Carotid Artery Stenosis

J. Mocco, David A. Wilson, Andrew F. Ducruet, Ricardo J. Komotar, William J. Mack, Joseph Zurica, Robert R. Sciacca, Eric J. Heyer and E. Sander Connolly

Stroke. 2006;37:240-242; originally published online December 1, 2005; doi: 10.1161/01.STR.0000195183.04978.4f

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2005 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/37/1/240

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/