Elevations in Preoperative Monocyte Count Predispose to Acute Neurocognitive Decline After Carotid Endarterectomy for Asymptomatic Carotid Artery Stenosis

J. Mocco, MD; David A. Wilson, BS; Andrew F. Ducruet, MD; Ricardo J. Komotar, MD; William J. Mack, MD; Joseph Zurica, BA; Robert R. Sciacca, EngScD; Eric J. Heyer, MD, PhD; E. Sander Connolly, MD

Background and Purpose—Although the incidence of major stroke attributable to carotid endarterectomy (CEA) is low (1% to 2%), ≈25% of patients experience subtle postoperative neurocognitive dysfunction. This study examines whether preoperative leukocyte profiles predict cognitive outcome in asymptomatic CEA patients.

Methods—Sixty-nine asymptomatic CEA patients underwent neuropsychometric testing preoperatively and on postoperative day 1 (POD1). Preoperative white blood cell counts and differentials were obtained. Logistic regression was performed for risk factors for neurocognitive decline. Variables achieving univariate \(P < 0.10 \) were included in multivariate analysis.

Results—Eighteen (26%) patients experienced neurocognitive decline on POD1; multivariate analysis demonstrated that preoperative monocyte count (\(P = 0.011 \)) and age (\(P = 0.02 \)) independently predicted outcome.

Conclusions—Preoperative monocyte count and age are independently associated with acute neurocognitive decline after CEA for asymptomatic stenosis. (Stroke. 2006;37:240-242.)

Key Words: carotid endarterectomy ■ ischemia ■ neuropsychology
expressed as mean±SD (odds ratio, 95% CI, P value) or with P<0.05 considered significant.

Results

Cohort Characteristics

Demographic/intraoperative variables for CEA and control patients are presented in Table 2. Eighteen (26%) patients experienced neurocognitive decline on POD1. There was no significant difference in age or anesthesia between the experimental/control groups or percent ipsilateral carotid stenosis between the injured/uninjured cohorts. No patients experienced radiographically/clinically apparent major postoperative stroke.

Statistics

Leukocyte analysis demonstrated no statistically significant differences between injured/uninjured groups, with the exception of monocytes. Mean preoperative monocyte counts were 0.70±0.19 cells/nL in the injured and 0.52±0.18 cells/nL in the uninjured group (P<0.001).

Univariate analysis demonstrated a 12% increased risk of neurocognitive injury (1.12, 1.02 to 1.22, 0.02) for each year age increase. Each SD increase in monocyte count (SD=0.20 cells/nL) resulted in a 179% increase risk of neurocognitive injury (2.79, 1.46 to 5.35, 0.002). Neutrophil count trended toward significance in univariate analysis (1.64, 0.96 to 2.80, 0.07). Lymphocyte count and other stroke risk factors did not reach significance (P<0.10). Total WBC count was not included in the multivariate analysis because of high correlation with neutrophil count (Pearson correlation r=0.89; P<0.0001).

Multivariate analysis included age, monocyte, and neutrophil count (Table 1). Age was predictive of outcome (1.12, 1.02 to 1.24, 0.02). Monocyte count remained highly significant (2.37, 1.21 to 4.62, 0.01), and neutrophil count a borderline predictor (1.78, 0.97 to 3.27, 0.06).
Discussion

Preoperative monocyte count and age independently predict acute neurocognitive outcome after CEA for asymptomatic stenosis. These associations persist when accounting for conventional stroke risk factors, including smoking, which is known to elevate WBC counts.

Acute post-CEA neurocognitive dysfunction is believed to be ischemic in nature attributable to cerebral hypoperfusion or microembolization of plaque. Previous work demonstrates an association between impaired post-CEA NPMT performance and elevated serum levels of S100b, a marker of glial cell death, supporting this hypothesis. NPMT testing offers a more detailed assessment of higher cortical functioning than traditional neurological examination. Thus, patients may experience cognitive decline attributable to subtle ischemia without the traditional radiographic or clinical characteristics of major stroke.

Our findings suggest an inflammatory component to acute post-CEA cognitive dysfunction. Atherosclerosis is viewed as a chronic inflammatory condition, with monocyte activation and infiltration implicated as initiating events, and plaque macrophage content independently associated with instability. Elevated preoperative monocyte counts may therefore indicate the presence of unstable plaque more prone to microembolize during CEA. Furthermore, a role for monocytes in stroke, independent of atherosclerosis, has been suggested. Interleukin-8, a monocyte release product, is elevated after stroke and serves as a strong neutrophil chemoattractant. This may “prime” patients for acute ischemic post-CEA neurocognitive decline by creating a favorable environment for neutrophil recruitment after disrupted cerebral blood flow during surgery.

Further investigation is necessary to elucidate the mechanisms linking elevated monocyte counts with acute post-CEA cognitive dysfunction. Although previous data suggest that the majority of these patients will continue to experience impaired NPMT performance at 1 month, additional investigations assessing the association of monocyte counts and delayed post-CEA cognitive decline are warranted.

Acknowledgments

J.M. was supported by the Congress of Neurological Surgeons Wilder Penfield Clinical Research Fellowship. D.A.W. was supported by a Doris Duke Clinical Research Fellowship. R.J.K. was supported by an National Institutes of Health T32 Fellowship. E.J.H. and E.S.C. were supported by NIA (RO1 AG17604-02) grant and Herbert Irving Clinical Research Center.

References

Elevations in Preoperative Monocyte Count Predispose to Acute Neurocognitive Decline After Carotid Endarterectomy for Asymptomatic Carotid Artery Stenosis

J. Mocco, David A. Wilson, Andrew F. Ducruet, Ricardo J. Komotar, William J. Mack, Joseph Zurica, Robert R. Sciacca, Eric J. Heyer and E. Sander Connolly

Stroke. 2006;37:240-242; originally published online December 1, 2005; doi: 10.1161/01.STR.0000195183.04978.4f

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2005 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/37/1/240

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Stroke* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Stroke* is online at:
http://stroke.ahajournals.org/subscriptions/