Homocysteine
Call Off the Funeral

J. David Spence, MD, FRCPC, FAHA

See related article, pages 456–460.

The authors of the much publicized though not yet published Norwegian Vitamin Study (NORVIT) of vitamin therapy in coronary artery disease, are widely quoted as saying that vitamin therapy for lowering plasma total homocysteine (tHcy) was harmful, and that “homocysteine is dead.” However, the slides of their presentation1 do not show the B12 status of the participants, nor do they indicate whether B12 injections were given to participants with low levels of B12. Commentators2 have called NORVIT “the largest trial to date to test the hypothesis that folate supplementation reduces risk of cardiovascular disease,” but because there were 4 treatment arms in NORVIT, each with 900 participants, the number of patients randomized to folate/B12 or folate/B6/B12 was essentially the same as that in the Vitamin Intervention for Stroke Prevention (VISP) trial3 (n=1800). They used a much higher dose of B6 than other studies and cannot exclude the possibility that their results were driven by that choice. As did VISP, they also used a dose of B12 that, as has recently become apparent, was too low for adequate absorption of B12 in elderly subjects (discussed below).

In this issue of Stroke, a substudy of the Vitamins to Prevent Stroke (VITATOPS) trial4 reports that in Singapore, treatment with 2.5 mg folic acid, 0.5 mg vitamin B12, and 25 mg B6 reduced levels of tHcy by 3.8 μmol/L compared with placebo.5 The authors also studied 2 polymorphism of methylene tetrahydrofolate reductase (MTHFR) and found that the MTHFR C677T genotype was an independent determinant of tHcy levels at baseline (P=0.005), but A1298C was not (P=0.08). The reduction of tHcy was similar among patients with the wild-type alleles as in those with the 2 polymorphisms and was similar to that observed in VITATOPS patients in Perth, Australia.6 These findings indicate that VITATOPS should have sufficient power to adequately test the hypothesis that lowering of tHcy reduces cardiovascular risk.

The authors suggested that the null effect of the VISP trial,3 in which the separation of tHcy between high-dose and low-dose vitamin groups was only 2 μmol/L, was attributable to folate fortification of grain cereal products in North America. However, there was more to the issue.

Reflection on the result of the intention-to-treat analysis of VISP, in light of evidence that became available after VISP was initiated, suggested that in the era of folate fortification, which coincided with the initiation of VISP, vitamin B12 became the key determinant of response to vitamin therapy. In VISP, we did not use a placebo control; we gave to both arms of the study a multiple vitamin containing the usual recommended daily intake (RDI) of many vitamins, with either a low dose or a high dose of folate, B6, and B12.7 Unfortunately, it appears we gave too high a dose of B12 in the low-dose vitamin arm of the study (6 mcg daily; at least the RDI, or by some lights, 3× the RDI), and too low a dose of B12 (400mcg daily) for elderly patients in the high-dose arm. A dose-response study8 published 5 years after the initiation of VISP showed that elderly patients with B12 levels <221 pmol/L require 1000 μg daily for adequate absorption. In part, that high-dose requirement may be related to administration of vitamin tablets at times other than meals, when intrinsic factor is released from gastric mucosa. Then, we inadvertently negated the effect of B12 in our randomized treatment by giving injections of vitamin B12, for safety and ethical reasons, to patients in both arms of the study who had low levels of serum B12. Thus, we ensured that the very patients most likely to respond to B12 were not receiving their randomized therapy. Therefore, in VISP, what we showed was essentially that 25 mg daily of vitamin B12 was ineffective.

We therefore analyzed9 the results of VISP for patients who were capable of showing a response by excluding patients with B12 levels <250 pmol/L (meaning they would have received B12 injections or had reduced capacity to absorb B12, those with B12 levels >637 pmol/L (indicating they were probably taking supplements) and excluding patients with renal failure (because they are less responsive to vitamin therapy10). In the 2155 patients remaining, there was a significant 21% reduction of stroke/death/coronary events. When we stratified this subgroup at the median serum B12 level at entry (322 pmol/L), it became apparent that the principal determinant of response to vitamin therapy was the ability to absorb adequate levels of B12. The participants who fared the best were those with higher baseline B12 levels who received high-dose vitamins; the ones who fared the worst were those who came into the trial with lower levels of B12 and received low-dose vitamins (P=0.03 for stroke/coronary events; P=0.02 for stroke/death/coronary events). Thus, B12 status was a key determinant of response to vitamin therapy.

The disparate results of 2 trials of vitamin therapy for homocysteine in coronary angioplasty also suggest that B12 is a key component of such treatment. Whereas Schnyder et al, who showed a reduction of restenosis11 and events12 with
vitamin therapy, used 400 mcg daily of B12, Lange et al, who showed no effect of vitamin therapy, used only 40 mcg daily.

It is increasingly clear that in the elderly (who represent a large proportion of vascular patients), the key nutritional determinant of plasma homocysteine is vitamin B12, and the real problem is malabsorption of B12. Furthermore, it is inappropriate to define adequate levels of serum B12 by the “normal” range (mean ± 2SD or variants of that definition) because when defined metabolically (by levels of B12 below which methylmalonic acid is elevated), [approx. 20% of the elderly are B12 deficient]. Thus, the “normal” range includes patients with B12 deficiency. The threshold B12 level below which methylmalonic acid levels begin to rise (thus defining physiologically inadequate B12) is 258 pmol/L; in Framingham, 40.5% of the elderly (versus 17.9% of younger subjects) had levels below that threshold. It has therefore been suggested that instead of measuring serum B12, measurement of holo-transcobalamin would be a more sensitive way of defining adequacy of B12. Robertson et al showed that in the era since folate fortification, serum B12 is strongly related to plasma tHcy and to carotid plaque area, and Quinlivan et al also showed that in the setting of folate fortification, B12 becomes a key determinant of tHcy.

In addition to the increasingly apparent importance of B12 in lowering of tHcy, it should be recognized that some patients unresponsive to folate/B6/B12 may need the addition of betaine, and in renal failure, the addition of thiols, to achieve adequate reductions of tHcy. It is therefore time to stop calling vitamin intervention for lowering of tHcy “folate therapy”; it should be called “vitamin therapy.” It appears very likely that to achieve adequate reductions of tHcy in elderly patients, we will need higher doses of B12 than have been used in the past. We should also await the results of VITATOPS and other trials before scheduling the funeral for homocysteine.

References


Key Words: hyperhomocysteinaemia
Homocysteine: Call Off the Funeral
J. David Spence

Stroke. 2006;37:282-283; originally published online January 5, 2006;
doi: 10.1161/01.STR.0000199621.28234.e2

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/37/2/282

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/