Role of NAD(P)H Oxidase in Alcohol-Induced Impairment of Endothelial Nitric Oxide Synthase–Dependent Dilation of Cerebral Arterioles

Hong Sun, PhD; Hong Zheng, MD; Elizabeth Molacek; Qin Fang, MD; Kaushik P. Patel, PhD; William G. Mayhan, PhD

Background and Purpose—Our goal was to determine whether NAD(P)H oxidase is involved in impaired endothelial nitric oxide synthase (eNOS)–dependent reactivity of cerebral arterioles during chronic alcohol consumption.

Methods—Sprague-Dawley rats were fed with an alcohol diet for 2 to 3 months. We determined the effects of acute and chronic treatment with an NAD(P)H oxidase inhibitor, apocynin, on responses of pial arterioles to eNOS-dependent agonists (acetylcholine and ADP) and an eNOS-independent agonist (nitroglycerin). Expression of NAD(P)H oxidase in pial arterioles was measured with the use of real-time polymerase chain reaction and Western blot analysis, and superoxide production was measured with the use of lucigenin-enhanced chemiluminescence.

Results—Vasodilation in response to acetylcholine and ADP, but not nitroglycerin, was significantly less in alcohol-fed rats. Treatment with apocynin did not alter vasodilation in non–alcohol-fed rats but significantly improved impaired vasodilation in alcohol-fed rats. In addition, an upregulation of p47phox in pial arterioles was found in alcohol-fed rats. Furthermore, alcohol consumption increased superoxide production under basal conditions and in the presence of ADP and NAD(P)H.

Conclusions—Our findings suggest that NAD(P)H oxidase plays a role in chronic alcohol consumption–induced impairment of eNOS-dependent dilation of cerebral arterioles. (Stroke. 2006;37:495-500.)

Key Words: alcohol ■ NADPH oxidase ■ nitric-oxide synthase ■ stroke

C

Copyright 2006 American Heart Association, Inc.

From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha.

Key Words: alcohol ■ NADPH oxidase ■ nitric-oxide synthase ■ stroke

C

Copyright 2006 American Heart Association, Inc.

From the Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha.

Correspondence to Hong Sun, MD, PhD; Department of Cellular and Integrative Physiology, 985850 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198-5850. E-mail hsu1@unmc.edu

© 2006 American Heart Association, Inc.

Stroke is available at http://www.strokeaha.org

DOI: 10.1161/01.STR.0000199033.06678.c3
Preparation of Animals
On the day of the experiment, the rats were anesthetized (thiobutabarbital sodium [Inactin], 100 mg/kg body wt IP), and a tracheotomy was performed. The rats were ventilated mechanically with room air and supplemental oxygen. A catheter was placed into a femoral vein for injection of supplemental anesthesia, and a femoral artery was cannulated for measurement of arterial blood pressure and to obtain a sample for the measurement of arterial blood gas.

To visualize the microcirculation of the cerebral cortex, the cranium was prepared over the left parietal cortex. The cranial window was suffused with artificial cerebrospinal fluid that was bubbled with 95% nitrogen and 5% carbon dioxide. Temperature of the suffusate was maintained at 37 ± 1°C. The cranial window was connected via a 3-way valve to a pump, which allowed for infusion of agonists and antagonists. Diameter of pial arterioles was measured with the use of a video image-sampling device.

Experimental Protocol
Responses of pial arterioles were examined during suffusion of agonists that presumably produce vasodilation via activation of eNOS (acetylcholine [0.1 and 10 μmol/L] and ADP [1 and 10 μmol/L]). We also examined responses to nitroglycerin (0.01 and 0.1 μmol/L), which produces vasodilation independent of eNOS. Agonists were mixed in artificial cerebrospinal fluid and then superfused over pial microcirculation in a random manner. Diameter of pial arterioles was measured immediately before application of agonists and every minute for 5 minutes during application of agonists. Steady state responses were reached within 2 to 3 minutes, and the diameter returned to baseline within 5 minutes after application of agonists was stopped.

In acute studies, after initially examining responses to the agonists, we then examined the effect of treatment with apocynin (1 mmol/L) in non–alcohol-fed and alcohol-fed rats. One hour after the suffusion of apocynin was started and for the duration of the experiment, we measured vasodilation of pial arterioles to acetylcholine, ADP, and nitroglycerin in non–alcohol-fed and alcohol-fed groups. In addition, apocynin did not alter dilation of pial arterioles to acetylcholine and ADP in alcohol-fed rats (Figures 1, 2, and 3).

Superoxide Measurement
Superoxide production was measured with the use of lucigenin-enhanced chemiluminescence. After the rat was exsanguinated, the brain was removed and immersed in cold modified Krebs–HEPES buffer containing the following (in mmol/L): 118 NaCl, 4.7 KCl, 1.3 CaCl2, 1.2 MgCl2, 1.2 KH2PO4, 25 NaHCO3, 10 HEPES, 10 glucose (pH 7.4). The middle cerebral artery (MCA) was isolated, and adventitial tissue was removed. Ring segments of MCA were placed in polypropylene tubes containing 5 μmol/L lucigenin, then read in a Femtometer FB12 (Zytox) luminometer, which reports relative light units emitted integrated over 30-second intervals for 5 minutes. Data were corrected for background and normalized to total protein of MCA segments.

Statistical Analysis
Results were compared with a 2-way repeated-measures ANOVA with Tukey post hoc test. Student t tests were used to compare responses to agonists before and after application of apocynin. Values are mean±SEM. A probability value of ≤0.05 was considered significant.

Results
Control Conditions
Body weight and mean arterial pressure were similar in all groups (non–alcohol-fed: 402±4 g, 113±7 mm Hg; alcohol-fed: 391±9 g, 104±6 mm Hg; non–alcohol-fed apocynin: 409±9 g, 112±3 mm Hg; alcohol-fed apocynin: 392±10 g, 106±3 mm Hg).

Responses to Agonists
Baseline diameter of pial arterioles was 38±2 μm in non–alcohol-fed and 38±1 μm in alcohol-fed rats (P<0.05). Acetylcholine (Figure 1) and ADP (Figure 2) produced dilation of pial arterioles in all groups. However, the magnitude of vasodilation was significantly less in alcohol-fed than in non–alcohol-fed rats. In contrast, alcohol consumption did not alter responses to nitroglycerin (Figure 3).

Responses After Topical Application of Apocynin
Topical application of apocynin did not alter baseline diameter of pial arterioles in non–alcohol-fed and alcohol-fed groups. In addition, apocynin did not alter dilation of pial arterioles to acetylcholine, ADP, and nitroglycerin in non–alcohol-fed rats (Figures 1, 2, and 3). In contrast, apocynin significantly improved dilation of pial arterioles to acetylcholine and ADP in alcohol-fed rats (Figures 1, 2, and 3).

Responses After Chronic Treatment With Apocynin
Baseline diameter of pial arterioles was 38±1 μm in non–alcohol-fed apocynin and 38±2 μm in alcohol-fed apocynin rats (P>0.05). Application of acetylcholine, ADP, and nitroglycerin dilated pial arterioles in non–alcohol-fed apocynin-treated and alcohol-fed apocynin-treated rats. Compared with that observed in alcohol-fed rats, impaired vasodilation to acetylcholine and ADP was alleviated in alcohol-fed apocynin-treated rats (Figures 1 and 2). Treatment of non–
alcohol-fed rats with apocynin did not alter vasodilation to acetylcholine, ADP, or nitroglycerin (Figures 1, 2, and 3).

Expression of NAD(P)H Oxidase Subunits
Chronic consumption of alcohol did not alter expression of nox-1, p22phox, and p67phox but significantly upregulated p47phox in parietal pial arterioles (Figures 4 and 5). We did not detect gp91phox in pial arterioles.

Superoxide Production
Basal superoxide was significantly higher in the MCA of alcohol-fed than in non–alcohol-fed rats (Figure 6). ADP (100 μmol/L) enhanced superoxide production in the MCA of alcohol-fed but not non–alcohol-fed rats (Figure 6). In addition, NAD(P)H (10 μmol/L)-induced superoxide production was significantly higher in alcohol-fed rats. Preincubation of the MCA with apocynin (1 mmol/L for 1 hour) did not affect superoxide production in non–alcohol-fed rats but markedly reduced superoxide production under basal conditions and in the presence of ADP and NAD(P)H in alcohol-fed rats.

Discussion
There are 3 new findings from this study. First, acute and chronic treatment with apocynin improves alcohol consumption–induced impairment of eNOS-dependent dilation of pial arterioles in 2- to 3-month non–alcohol-fed (control) and alcohol-fed (alcohol) rats. Values are mean±SE. *P<0.05 vs control. †P<0.05 vs alcohol. #P<0.05 vs control (after topical treatment with apocynin).
arterioles. Second, alcohol consumption produces an upregulation in p47phox in pial arterioles.

Third, alcohol consumption increases superoxide production under basal conditions and in the presence of ADP and NAD(P)H, and apocynin can suppress alcohol consumption–induced superoxide generation. We suggest that impaired eNOS-dependent dilation of pial arterioles during alcohol consumption is related to an increased expression/activity of NAD(P)H oxidase.

Several studies found that chronic exposure to alcohol results in an impairment of eNOS-dependent reactivity in large peripheral blood vessels of animals11,12 and humans.13 We found that chronic alcohol consumption also impairs eNOS-dependent dilation of pial arterioles. To determine the effect of alcohol consumption on eNOS-dependent reactivity in pial arterioles, we examined responses to acetylcholine and...
ADP. Previous studies have shown that dilation of rat pial arterioles in response to acetylcholine and ADP, but not nitroglycerin, could be attenuated by application of enzymatic inhibitors of NOS.14,15 In addition, Xu et al16 reported that NOS inhibitor N\(^6\)-nitro-L-arginine methyl ester but not neuronal NOS–selective inhibitor ARR-17477 significantly reduced acetylcholine- and ADP-induced dilation of pial arterioles in rats. These findings suggest that dilation of rat pial arterioles in response to acetylcholine and ADP is related to the endothelial synthesis/release of NO.

Previous studies,17,18 including ours,7 found that alcohol induces oxidative stress. In addition, impaired eNOS-dependent cerebral vasodilation during alcohol consumption can be restored by scavenging oxygen radicals.7,19 Thus, we suggest that alcohol consumption impairs eNOS-dependent responses of cerebral arterioles via an increase in oxidative stress, presumably an increase in the production of superoxide. However, cellular networks responsible for the formation of superoxide during alcohol consumption are not entirely clear. NAD(P)H oxidase has been found to contribute to vascular dysfunction during several disease states.20,21 In addition, Kono et al10 reported that NAD(P)H oxidase–derived oxygen radicals are key oxidants in alcohol-induced liver disease. In the present study, we found an increased superoxide production during chronic alcohol consumption. In some nonphagocytic cells there are gp91phox homologues that serve a similar function. A homologue of gp91phox, mox-1, was identified in rat aortic smooth muscle cells.24,25 NAD(P)H oxidase consists of 4 major subunits: gp91phox, p22phox, p47phox, and p67phox. In the present study mox-1, but not gp91phox, was detected in pial arterioles and was not altered by alcohol consumption. However, we found an upregulation of p47phox in pial arterioles of alcohol-fed rats. The function of p47phox is to facilitate steady association of gp91phox and p67phox.27 Activated enzyme complex then uses NAD(P)H as the electron donor for reduction of molecular oxygen to superoxide. It has been demonstrated that p47phox is critical for vascular NAD(P)H oxidase activation.28 Previous studies found that p47phox is upregulated in diseased vessels.28,29 The precise cellular pathway(s) underlying increased p47phox expression remains uncertain. Angiotensin II and thrombin have been reported to increase vascular p47phox expression.28,29 Alcohol consumption robustly activates the renin-angiotensin system and increases plasma concentration of angiotensin II.30 Thus, the mechanism underlying increased expression of p47phox during chronic alcohol consumption requires further investigation.

In the present study we found an increased superoxide production under basal conditions and in the presence of ADP and NAD(P)H, which could be suppressed by acute treatment with apocynin. These findings suggest that increased superoxide generation during alcohol consumption is related to NAD(P)H oxidase. Although an increased superoxide production was found, it is still not clear which cell line(s) is responsible for increased superoxide production during alcohol consumption. In addition, we used the MCA to examine superoxide production.
Although it is not known whether there are segmental differences in the production of superoxide, we suggest that the MCA may be representative of cerebral arterioles. Furthermore, although numerous studies have used a concentration of lucigenin similar to the present study, others have suggested that lucigenin may influence superoxide production. In the present study ADP did not affect superoxide in non–alcohol-fed rats but significantly enhanced superoxide production in alcohol-fed rats. It seems that eNOS might be a potential source of superoxide during alcohol consumption. A recent study demonstrated that NAD(P)H oxidase produces superoxide and thus leads to oxidation of BH4, which decreases NO production and increases superoxide production from eNOS in aorta of hypertensive rats. In a previous study we found that topical application of BH4 restored impaired eNOS-dependent dilation of pial arterioles during alcohol consumption. Thus, it is possible that an increased superoxide production via NAD(P)H oxidase during chronic alcohol consumption induces an oxidation of BH4, and thus further impairs eNOS-dependent cerebral vasodilation.

Summary

In summary, we examined the role of NAD(P)H oxidase in chronic alcohol consumption–induced impairment of eNOS-dependent reactivity of pial arterioles. We found that consumption of alcohol impairs reactivity of pial arterioles to acetylcholine and ADP but not to nitroglycerin. In addition, we found that superoxide production and the expression of p47phox were increased in alcohol-fed rats. Furthermore, acute and chronic treatment with an inhibitor of NAD(P)H oxidase alleviated alcohol-induced impairment of eNOS-dependent reactivity. We suggest that superoxide released via activation of NAD(P)H oxidase contributes to impaired eNOS-dependent dilation of pial arterioles during alcohol consumption. We speculate that our findings may have important implications for the pathogenesis of cerebrovascular abnormalities, including stroke, observed in chronic alcoholics.

Acknowledgments

This study was supported by National Institutes of Health grants DA 14258, HL 79587, and AA 11288; a Beginning Grant-in-Aid from the University of Nebraska Medical Center.

References

Role of NAD(P)H Oxidase in Alcohol-Induced Impairment of Endothelial Nitric Oxide Synthase–Dependent Dilation of Cerebral Arterioles
Hong Sun, Hong Zheng, Elizabeth Molacek, Qin Fang, Kaushik P. Patel and William G. Mayhan

Stroke. 2006;37:495-500; originally published online December 22, 2005;
doi: 10.1161/01.STR.0000199033.06678.c3
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2005 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/37/2/495

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/