Ineffectiveness of Prism Adaptation on Spatial Neglect Signs

Marc Rousseaux, MD, PhD; Thérèse Bernati, PhD; Arnaud Saj, PhD; Odile Kozlowski, MD

Background and Purpose—To evaluate the effect of prism adaptation (PA) on spatial neglect signs.

Methods—Ten patients (hemianopia in 6) and 8 control subjects were included. Tasks were reading single words, nonwords, and a text, bell cancellation, line bisection, and scene drawing, before and after adaptation, with either deviating or neutral prisms.

Results—Errors were more frequent in patients but without any specific effect of PA. We found partial improvement at the late sessions, independent of prisms.

Conclusions—We did not confirm the efficacy of PA on spatial neglect.

Key Words: neglect ■ rehabilitation ■ stroke

Spatial neglect (SN) is a main consequence of right hemisphere stroke. Prism adaptation (PA) to a rightward optical deviation could reduce SN manifestations and especially improve performance in article and pencil tests1,2 and optical deviation could reduce SN manifestations and especially improve performance in article and pencil tests1,2 and errors in reading texts,1 single words,2,3 and nonwords.3 However, the efficacy of PA has been discussed recently.4,5

We re-evaluated the efficacy of PA on reading and other clinical tests by comparing the effect of deviating and neutral prisms in the same patients.

Subjects and Methods

Subjects

Ten right-handed SN patients were recruited consecutively after a recent (mean poststroke delay 54 days; range 17 to 102) right hemisphere stroke (middle cerebral artery infarct 8; subcortical hemorrhage 2). Each gave written informed consent to participate in the study. They were selected for their pathological performance6 in bell cancellation (left–right omissions in 6 cases; N 7.7; hemianoptic: N 5; controls 2.8; H 8.6; controls) and Ogden scene copy. All presented with spatial dyslexia in text reading (116 words).6 The severity of SN was most often severe (>1 of the following tests: bell cancellation, line bisection (20 cm long), and Ogden scene copy. All presented with spatial dyslexia in text reading (116 words).6 The severity of SN was most often severe (>1 of the following tests: bell cancellation, line bisection (20 cm long), and Ogden scene copy. All presented with spatial dyslexia in text reading (116 words).6 The severity of SN was most often severe (>1 of the following tests: bell cancellation, line bisection (20 cm long), and Ogden scene copy. All presented with spatial dyslexia in text reading (116 words).6

We used repeated-measure ANOVAs, with group as between-subject factors. Post hoc analyses used the Newman–Keuls test. The α risk was P≤0.05.

Tests

We first used conventional clinical SN test: bell cancellation (left–right omissions), line bisection (20 cm; right deviation in mm), and Ogden scene drawing (from 0: omission of the left tree, barrier, house, and left part of the right tree; to 10: perfect reproduction). A special emphasis was given to reading tests. Words (list A 48; list B 48) were concrete substantives, balanced according to 3 main factors: type (noncompound, prefixed, suffixed, compound words), length (5 to 6, 7 to 8, 9 to 10 letters), and frequency in the written language (high, low). Lists A and B were equivalent and presented alternatively. Nonwords (72) were constructed from the high-frequency words by single letter substitution or addition in the left or the right part of letter strings. Items were presented in a fixed semirandom order and written in lowercase “courier” fonts on an 8×15-cm card. We analyzed the percentage of errors. We also presented a text of 130 words (size font 20; “courier”; 10 lines of 27.3 cm; 9 loosely related sentences) written on a horizontal A4 sheet and evaluated the difference between left and right omissions (%).

Procedure

Each test was presented during 6 sessions of ~35 minutes: pretest 1 (baseline), post-test 1 (1 hour pre-PA), post-test 2 (3 hours after PA), post-test 3 (1 day after PA), and post-test 4 (3 days after PA).

PA was done successively (1-week interval, counterbalanced order) with prisms deviating visual perception at 10° toward the right side or with neutral prisms (Société Peter, Lyon). During PA, subjects had to point repeatedly with the right index finger to red or green dots placed at +10° or −10° from the body midline (60 cm). At least 50 trials were performed until target was reached without final hesitation.1 A mask prevented subjects from viewing their arm.

Immediately after PA, they were tested with 2 to 3 trials to ascertain leftward deviation more than −2.9° (3 cm) when pointing with the eyes closed to a dot previously seen, facing their body midline. The mean deviation was −4.8° (range −3.8° to −10.4°).

Statistical Analyses

We used repeated-measure ANOVAs, with group as between-subject factor (N+H+, N+H−, controls) and prism and session as within-subject factors. Post hoc analyses used the Newman–Keuls test. The α risk was P≤0.05.

Results

In conventional SN tests, the group effect was always significant. Compared with controls, SN patients from both groups showed significant higher left–right omissions in the bell cancellation test (N+H+ 8.9 of 15; N+H− 9.4; controls 0.02; P=0.0001), right deviation in line bisection (N+H+ 31 of 100 mm; N+H− 17; controls 0.06; P=0.0007), and left...
omissions in the Ogden scene drawing (N+H+6.6 of 10; N+H−9.2; controls 10; P=0.006). But the main effects of prism and session and the interactions with group were never significant.

In reading single words, factor group showed a clear tendency to significance (P=0.052) because errors (%) were more frequent in both patient groups than controls (N+H+40.0%; N+H−11.9%; controls 0.4%). Errors decreased with sessions (P=0.001), and the group×session interaction (P=0.002) was explained by the more severe reduction at post-tests 3 and 4 in both patient groups (Figure). However, the group×session×prism interaction was not significant, showing that this phenomenon was present with each prism. The main effect of prism was not significant.

In reading single nonwords, the group effect (P=0.009) was related to more frequent errors in both patient groups than controls (N+H+52.7%; N+H−28.2%; controls 1.8%). We found a main effect of session (P=0.009) because of a reduction of errors at post-tests 3 and 4. But the main effect of prism and the group×session×prism interaction were not significant.

For reading a text, the group effect was significant (P=0.0001) on left–right omissions, which were greater in patients than controls (global: N+H+54.0%; N+H−4.2%; controls 0.05%). The main effects of the other factors and the interactions were not significant.

At an individual level, the negative results were relatively homogenous and independent of the severity of SN; no patient showed definite and selective improvement using deviating prisms.

Discussion

In this study of 10 stroke patients with SN, we failed to confirm the positive effect of PA, which has been reported on “paper and pencil” tests using symbol cancellation, line bisection, or scene drawing.1,2,7 Furthermore, PA did not improve neglect dyslexia. Reduction of errors in text reading has been reported in 1 study at the immediate and late (2 hours) post-tests. Positive effect has also been reported on single word and nonword reading.2,3 However, in a more recent report,4 authors did not find definite efficacy when patients had hemianopia in addition to SN.

It seems unlikely that our negative results were related to prisms, PA training, or tests, which were similar to those used by other authors. The post-PA effect measured by index finger pointing was comparable.2–4 Furthermore, the absence of effect was not related to the presence of hemianopia.4 One important point was that we showed partial improvement with repetition of tests, independent of the quality of prisms, which was more evident at later sessions. It could be related to a learning effect or an increase of vigilance or sustained attention, both of which have an important relationship with SN.8 This could account for the improvement reported in previous series, in which the effect of deviating prisms was not systematically compared with that of neutral prisms in the same patients.

It must also be emphasized that other authors did not find effectiveness on spatial attention tasks,3 and that poor generalization has been reported when PA used an upper-limb reaching task compared with a walking task.9 This later result suggests that PA be performed using more global tasks to draw clearer conclusions about its efficacy in SN patients.

References

Ineffectiveness of Prism Adaptation on Spatial Neglect Signs
Marc Rousseaux, Thérèse Bernati, Arnaud Saj and Odile Kozlowski

Stroke. 2006;37:542-543; originally published online December 22, 2005;
doi: 10.1161/01.STR.0000198877.09270.e8
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2005 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/37/2/542

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/