SAINT-I Worked, But the Neuroprotectant Is Not NXY-059

To the Editor:

Testing AstraZeneca’s nitrone drug NXY-059 against acute stroke, the SAINT-I phase-3 trial1 showed significant neuroprotectant activity.1 Moreover, looking at hemorrhagic progression secondary to the “clot-buster” tPA (alteplase) in a parallel trial, symptomatic hemorrhage more than halved in the NXY-059-treated group, to 2.5% versus 6.4% in the controls. Likewise, the rate of asymptomatic hemorrhage was significantly lower in the treatment group (12.9% versus 20.9%). Although the subjectively modified Rankin Scale used in the main trial might be open to question, it is hard to dismiss the alteplase findings, based on hard dichotomous radiological data.

Unfortunately, the second (SAINT-II) trial failed. This difference has been ascribed to unspecified methodological problems. But there is a ready alternative explanation. This is that a neuroprotectant was present in SAINT-I, but not in SAINT-II.

Phenylbutylnitrone (PBN) derivatives such as NXY-059 hydrolyze to produce the corresponding benzaldehyde plus N-t-butylhydroxyamine (NtBHA).2–7 Itself a potent radical scavenger, NtBHA readily oxidizes to its parent spintrap, MNP or “2-methyl-2-nitrosopropane”, AKA, “t-nitrosobutane”. In addition to trapping radicals, MNP is reduced by (say) vitamin-C or antioxidant, neuroprotective and vessel-dialating properties.

Such hydrolysis products might account for the success of the SAINT-I trial and their absence for the failure of SAINT-II. Phenylbutylnitrone (PBN) derivatives such as NXY-059 hydrolyze to produce the corresponding benzaldehyde plus N-t-butylhydroxyamine (NtBHA).2–7 Itself a potent radical scavenger, NtBHA readily oxidizes to its parent spintrap, MNP or “2-methyl-2-nitrosopropane”, AKA, “t-nitrosobutane”. In addition to trapping radicals, MNP is reduced by (say) vitamin-C or antioxidant, neuroprotective and vessel-dialating properties.

Such hydrolysis products might account for the success of the SAINT-I trial and their absence for the failure of SAINT-II. Phenylbutylnitrone (PBN) derivatives such as NXY-059 hydrolyze to produce the corresponding benzaldehyde plus N-t-butylhydroxyamine (NtBHA).2–7 Itself a potent radical scavenger, NtBHA readily oxidizes to its parent spintrap, MNP or “2-methyl-2-nitrosopropane”, AKA, “t-nitrosobutane”. In addition to trapping radicals, MNP is reduced by (say) vitamin-C or antioxidant, neuroprotective and vessel-dialating properties.

But there is a ready alternative explanation. This is that a neuroprotectant was present in SAINT-I, but not in SAINT-II.

Phenylbutylnitrone (PBN) derivatives such as NXY-059 hydrolyze to produce the corresponding benzaldehyde plus N-t-butylhydroxyamine (NtBHA).2–7 Itself a potent radical scavenger, NtBHA readily oxidizes to its parent spintrap, MNP or “2-methyl-2-nitrosopropane”, AKA, “t-nitrosobutane”. In addition to trapping radicals, MNP is reduced by (say) vitamin-C or antioxidant, neuroprotective and vessel-dialating properties.

Unfortunately, the second (SAINT-II) trial failed. This difference has been ascribed to unspecified methodological problems. But there is a ready alternative explanation. This is that a neuroprotectant was present in SAINT-I, but not in SAINT-II.

Phenylbutylnitrone (PBN) derivatives such as NXY-059 hydrolyze to produce the corresponding benzaldehyde plus N-t-butylhydroxyamine (NtBHA).2–7 Itself a potent radical scavenger, NtBHA readily oxidizes to its parent spintrap, MNP or “2-methyl-2-nitrosopropane”, AKA, “t-nitrosobutane”. In addition to trapping radicals, MNP is reduced by (say) vitamin-C or antioxidant, neuroprotective and vessel-dialating properties.

Such hydrolysis products might account for the success of the SAINT-I trial and their absence for the failure of SAINT-II. Phenylbutylnitrone (PBN) derivatives such as NXY-059 hydrolyze to produce the corresponding benzaldehyde plus N-t-butylhydroxyamine (NtBHA).2–7 Itself a potent radical scavenger, NtBHA readily oxidizes to its parent spintrap, MNP or “2-methyl-2-nitrosopropane”, AKA, “t-nitrosobutane”. In addition to trapping radicals, MNP is reduced by (say) vitamin-C or antioxidant, neuroprotective and vessel-dialating properties.

Unfortunately, the second (SAINT-II) trial failed. This difference has been ascribed to unspecified methodological problems. But there is a ready alternative explanation. This is that a neuroprotectant was present in SAINT-I, but not in SAINT-II.

Such hydrolysis products might account for the success of the SAINT-I trial and their absence for the failure of SAINT-II. Phenylbutylnitrone (PBN) derivatives such as NXY-059 hydrolyze to produce the corresponding benzaldehyde plus N-t-butylhydroxyamine (NtBHA).2–7 Itself a potent radical scavenger, NtBHA readily oxidizes to its parent spintrap, MNP or “2-methyl-2-nitrosopropane”, AKA, “t-nitrosobutane”. In addition to trapping radicals, MNP is reduced by (say) vitamin-C or antioxidant, neuroprotective and vessel-dialating properties.

Such hydrolysis products might account for the success of the SAINT-I trial and their absence for the failure of SAINT-II. Phenylbutylnitrone (PBN) derivatives such as NXY-059 hydrolyze to produce the corresponding benzaldehyde plus N-t-butylhydroxyamine (NtBHA).2–7 Itself a potent radical scavenger, NtBHA readily oxidizes to its parent spintrap, MNP or “2-methyl-2-nitrosopropane”, AKA, “t-nitrosobutane”. In addition to trapping radicals, MNP is reduced by (say) vitamin-C or antioxidant, neuroprotective and vessel-dialating properties.

Such hydrolysis products might account for the success of the SAINT-I trial and their absence for the failure of SAINT-II. Phenylbutylnitrone (PBN) derivatives such as NXY-059 hydrolyze to produce the corresponding benzaldehyde plus N-t-butylhydroxyamine (NtBHA).2–7 Itself a potent radical scavenger, NtBHA readily oxidizes to its parent spintrap, MNP or “2-methyl-2-nitrosopropane”, AKA, “t-nitrosobutane”. In addition to trapping radicals, MNP is reduced by (say) vitamin-C or antioxidant, neuroprotective and vessel-dialating properties.

Such hydrolysis products might account for the success of the SAINT-I trial and their absence for the failure of SAINT-II. Phenylbutylnitrone (PBN) derivatives such as NXY-059 hydrolyze to produce the corresponding benzaldehyde plus N-t-butylhydroxyamine (NtBHA).2–7 Itself a potent radical scavenger, NtBHA readily oxidizes to its parent spintrap, MNP or “2-methyl-2-nitrosopropane”, AKA, “t-nitrosobutane”. In addition to trapping radicals, MNP is reduced by (say) vitamin-C or antioxidant, neuroprotective and vessel-dialating properties.

Sample scenarios: the SAINT-I trial was delayed pending animal toxicity studies. Perhaps the SAINT-I trial was thus done with “old” NXY-059 and SAINT-II with new. Likewise, perhaps the parenteral solutions of NXY-059 used in SAINT-I were not “fresh” as in SAINT-2 or experienced more light exposure. Alternatively, perhaps the differences resulted from the application of the ‘527 patent’s stabilization methodology to SAINT-II.

Most importantly, should any such prove the case, the SAINT/STAIR methodology works well. It not only showed an unexpected neuroprotectant, but also distinguished this from NXY-059. That is, human neuroprotectants are not only possible, but provable.

Disclosures

P.H.P. has patent claims in this area.

Peter H. Proctor, PhD, MD
Proctor Clinic
Houston, Tex

Lynsey P. Tamborello, BS
University of Texas Medical Branch
Galveston, Tex

References

5. Lapchak PA, Chapman DF, Zivin JA. Pharmacological effects of the spin trap agents N-tert-Butyl Phenyl nitronitrone (PBN) and 2,2,6,6-Tetramethylpiperidine-N-Oxyl (TEMPO) in a rabbit thromboembolic stroke model, combination studies with the thrombolytic tissue plasminogen activator. Stroke. 2001;32:147–153.
SAINT-I Worked, But the Neuroprotectant Is Not NXY-059
Peter H. Proctor and Lynsey P. Tamborello

Stroke. 2007;38:e109; originally published online August 23, 2007;
doi: 10.1161/STROKEAHA.107.489161

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/38/10/e109

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published
in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office.
Once the online version of the published article for which permission is being requested is located, click
Request Permissions in the middle column of the Web page under Services. Further information about this
process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/