Gender Differences in Outcomes Among Patients With Symptomatic Intracranial Arterial Stenosis

Janice E. Williams, PhD, MPH; Marc I. Chimowitz, MBChB; George A. Cotsonis, MS; Michael J. Lynn, MS; Salina P. Waddy, MD; for the WASID Investigators

Background and Purpose—There are limited and conflicting data on gender differences in clinical outcomes among patients with symptomatic intracranial arterial stenosis. This study examined gender differences in patients enrolled in the Warfarin-Aspirin Symptomatic Intracranial Disease (WASID) Study.

Methods—Participants were 569 men and women with symptomatic intracranial arterial stenosis. They were followed-up for the occurrence of ischemic stroke and the combined end point of stroke or vascular death from February 1999 through July 2003 (mean follow-up, 1.8 years).

Results—Two-year rates of the primary end point were 28.4% and 16.6% for women and men, respectively. Cumulative probabilities of the outcomes over time were estimated by the Kaplan-Meier product-limit method and were compared between men and women with the use of the log-rank test. Cox proportional hazards regression analyses were used to estimate the hazard ratio of gender (women to men) for ischemic stroke and for the primary end point. The probabilities of ischemic stroke (P=0.005) and of the combined end point of stroke or vascular death (P=0.017) over time were significantly higher in women than men. Women had a greater multivariate-adjusted risk for ischemic stroke (HR, 1.85; 95% CI, 1.14 to 3.01; P=0.013) and for the combined end point of stroke or vascular death (HR, 1.58; 95% CI, 1.01 to 2.48; P=0.045).

Conclusions—Women with symptomatic intracranial arterial stenosis are at significantly greater risk for ischemic stroke and for the combined end point of stroke or vascular death. These findings suggest the need for vigorous screening of risk factors and for aggressive management of risk factors and stroke in women. They also suggest the need to ensure adequate numbers of women in clinical trials designed to explore new and promising therapies for intracranial arterial stenosis. (Stroke. 2007;38:2055-2062.)

Key Words: cerebrovascular disease ■ gender ■ intracranial arterial disease ■ risk factors

Intracranial arterial stenosis is a significant risk factor for vascular events, having been implicated as a causal factor in 8% to 10% of all ischemic strokes,1–3 and as a major factor in recurrent stroke and vascular mortality.4,5 The burden of intracranial stenosis is not equally distributed across demographic strata. The disease has been reported as more common in blacks, Hispanics, and Asians than in whites,3,6–7 and as more severe in blacks and Asians.8,9 The risk of intracranial stenosis increases with advancing age.7

There are also reports of gender differences in the prevalence and severity of intracranial stenosis, but those studies are few in number and provide conflicting results. In a review of early clinical studies, a female preponderance of intracranial stenosis and a male preponderance of extracranial disease were reported.6 However, more recent clinical evidence has indicated a male preponderance of intracranial stenosis.2 Moreover, data from early autopsy series indicated that cerebral atherosclerosis (both intracranial and extracranial) was more prevalent and more severe in men, particularly between the ages of 40 and 60.10,11 An additional autopsy study showed that the degree of endothelial surface involvement by raised intracranial atherosclerotic lesions was greater in men at nearly every age.12

Compounding the limited data on gender differences in the prevalence and severity of intracranial stenosis is the paucity of data on gender differences in clinical outcomes among patients with this disease. To address this issue, the current analysis examined gender differences in the risk for outcome events among patients enrolled in the Warfarin-Aspirin Symptomatic Intracranial Disease (WASID) Study.1 In view of a male preponderance of intracranial atherosclerosis in most previous studies and population-based evidence of a higher incidence of stroke13 and higher rates of stroke recurrence in men than in women,14 we hypothesized that men would have a greater risk for ischemic stroke and for the combined outcome of stroke or vascular death in WASID.
Materials and Methods

Study Population
Participants were 569 men and women who were enrolled in the WASID Study. WASID was a randomized multi-site clinical trial performed in 59 medical centers in North America (58 United States, 1 Canada) from February 1990 through July 2003. This trial compared the efficacy of warfarin versus aspirin for preventing stroke or vascular death in patients with symptomatic stenosis of a major intracranial artery. Details of the WASID study design and results of the comparison of warfarin and aspirin have been previously published. Patients were eligible to participate in WASID if they met the following eligibility criteria: 40 years of age or older; a transient ischemic attack or nondisabling stroke that occurred within 90 days before being randomized into the study; angiographically confirmed stenosis (50% to 99%) of a major intracranial artery (carotid siphon, middle cerebral, vertebral, or basilar); and a modified Rankin score of ≤3. Patients were excluded if they had 50% to 99% stenosis of the extracranial carotid artery tandem to an intracranial carotid or middle cerebral artery stenosis; nonatherosclerotic stenosis of an intracranial artery; an embolism of cardiac origin; a contraindication for aspirin or warfarin therapy; a requirement for heparin therapy on study entry; or a comorbid condition that predicted short-term survival (eg, <5 years). Each site’s Institutional Review Board approved the study protocol and all patients gave written informed consent to participate.

Assessment of Baseline Characteristics
All baseline data were obtained on entry into the trial. Age, race/ethnicity, educational level, marital status, employment status, living arrangement, insurance status and type, physical activity levels, alcohol use, smoking status, and medical history were self-reported. The racial/ethnic designations were as follows: American Indian, Asian, Black, Hispanic, white, and other. Race/ethnicity was assessed because of the well-known racial/ethnic disparities in the occurrence of stroke. A history of coronary artery disease was defined as having a history of myocardial infarction, history of angina, coronary angioplasty, or coronary artery bypass surgery. Values for lipid levels were obtained from the medical record if they had been measured within 90 days before enrollment in the trial. If this condition had not been met, these measurements had to be taken within 48 hours of the qualifying event or between 6 weeks and 4 months after the qualifying event because cholesterol levels may decline after acute stroke. Blood pressures were obtained from the right arm while the patient was in a seated position. Hypertension was defined as the average of 2 blood pressure readings taken 5 minutes apart with systolic blood pressure ≥90 mm Hg, or diastolic blood pressure ≥60 mm Hg, or use of antihypertensive medication. Diabetes was defined as at least 2 fasting venous serum glucose levels >125 mg/dL, or oral hypoglycemic medication use, or insulin therapy.

Assessment of End Points
Patients were followed-up for a mean of 1.8 years (maximum, 4.5 years). Endpoints were ascertained through monthly telephone contacts with patients or family members and 4-month clinical examinations. Stroke Scale was defined as the average of 2 blood pressure readings taken 5 minutes apart with systolic blood pressure ≥90 mm Hg, or use of antihypertensive medication. Diabetes was defined as at least 2 fasting venous serum glucose levels >125 mg/dL, or oral hypoglycemic medication use, or insulin therapy.

Statistical Analysis
Because there were no differences in the outcome of patients treated with warfarin versus aspirin in the WASID trial, all patients were included in this analysis. Baseline sociodemographic and lifestyle characteristics, comorbid conditions, family history of vascular disease, angiographic findings, and characteristics of the qualifying event were examined for differences between women and men. The χ² test (or Fisher exact test, when appropriate) was used to test differences in proportions for categorical variables. An independent sample t test was used to test differences in means for the continuous variables. Cumulative probabilities of the outcomes over time were estimated by the Kaplan-Meier product-limit method and were compared between men and women with the use of the log-rank test. Cox proportional hazards regression analyses were used to estimate the hazard ratio of gender (women to men) for ischemic stroke and for the primary end point adjusted for other factors. Four consecutively nested hierarchical regression models were fit for each analysis. Model 1 included gender only. Model 2 was adjusted for the standard stroke risk factors of age, race/ethnicity, history of hypertension, history of diabetes, cigarette smoking, and history of lipid disorders. Model 3 included model 2 factors along with the factors that were unbalanced between men and women in univariate analysis, which were marital status, alcohol drinking, physical activity, diastolic blood pressure, history of coronary artery disease, anterior versus posterior circulation, and qualifying event (TIA or stroke), body mass index. Model 4 included model 3 factors along with factors related to the primary end point (severe stenosis and time from qualifying event to enrollment) and stroke severity (NIH Stroke Scale). Statistical significance was set at an α level of 0.05. All analyses were conducted using SAS version 8.2 (SAS Institute, Cary, NC).

Results
Three-hundred fifty men and 219 women were included in this analysis. The mean ages were 63.8 (SD, 11.5) and 63.2 (SD, 11.4) for men and women, respectively. Descriptive analysis of baseline sociodemographic characteristics indicated that women, compared with men, were proportionally higher black, unmarried, widowed, separated/divorced, unemployed, or living alone (Table 1). Women were more sedentary but less likely to consume alcohol or to have ever smoked cigarettes (Table 2). Regarding comorbidity, women had higher body mass indexes, and higher total and high-density lipoprotein cholesterol levels. In addition, women were more likely to be free of coronary artery disease, and were more likely to have a family history of stroke and stenosis involving the anterior cerebral circulation, most likely attributable to increased stenosis of the middle cerebral artery (Table 3). There were no significant differences between men and women in the proportions with severe (70% to 99%) stenosis. During the follow-up period, 59 combined end points (nonfatal/fatal strokes or nonstroke-related vascular deaths) were documented in women and 66 in men: the 2-year rates were 28.4% and 16.6% for women and men, respectively. Of the combined end points, 106 (8 fatal) were recurrent ischemic stroke events (53 in men and 53 in women), 3 hemorrhagic strokes (2 in men and 1 in women), and 16 nonstroke-related vascular deaths (11 in men and 5 in women). The cumulative probability of ischemic stroke (log-rank test, P = 0.005; Figure 1) and of the combined end point of stroke or vascular death (log-rank test, P = 0.02; Figure 2) were higher in women than men, indicating that women had significantly shorter vascular-event free survival. In propor-
TABLE 1. Sociodemographic Baseline Characteristics by Gender

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Men, N=350</th>
<th>Women, N=219</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age, yr (SD)</td>
<td>63.8 (11.5)</td>
<td>63.2 (11.4)</td>
<td>0.546</td>
</tr>
<tr>
<td>Race/ethnicity, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>90 (25.7)</td>
<td>84 (38.4)</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>219 (62.6)</td>
<td>112 (51.1)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>41 (11.7)</td>
<td>23 (10.5)</td>
<td></td>
</tr>
<tr>
<td>Education, n (%)</td>
<td></td>
<td></td>
<td>0.100</td>
</tr>
<tr>
<td>Less than high school</td>
<td>87 (24.9)</td>
<td>58 (26.7)</td>
<td></td>
</tr>
<tr>
<td>High school</td>
<td>145 (41.4)</td>
<td>104 (47.9)</td>
<td></td>
</tr>
<tr>
<td>More than high school</td>
<td>118 (33.7)</td>
<td>55 (25.4)</td>
<td></td>
</tr>
<tr>
<td>Marital status, n (%)</td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Married</td>
<td>244 (69.7)</td>
<td>88 (40.2)</td>
<td></td>
</tr>
<tr>
<td>Widowed</td>
<td>24 (6.9)</td>
<td>65 (29.7)</td>
<td></td>
</tr>
<tr>
<td>Separated/divorced</td>
<td>63 (18.0)</td>
<td>53 (24.2)</td>
<td></td>
</tr>
<tr>
<td>Never married</td>
<td>19 (5.4)</td>
<td>13 (5.9)</td>
<td></td>
</tr>
<tr>
<td>Employment status, n (%)</td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Full-time</td>
<td>109 (31.2)</td>
<td>48 (21.9)</td>
<td></td>
</tr>
<tr>
<td>Part-time</td>
<td>18 (5.2)</td>
<td>18 (8.2)</td>
<td></td>
</tr>
<tr>
<td>Unemployed</td>
<td>33 (9.5)</td>
<td>55 (25.1)</td>
<td></td>
</tr>
<tr>
<td>Retired</td>
<td>165 (47.3)</td>
<td>78 (35.6)</td>
<td></td>
</tr>
<tr>
<td>Disabled</td>
<td>24 (6.9)</td>
<td>20 (9.1)</td>
<td></td>
</tr>
<tr>
<td>Living arrangement, n (%)</td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Alone</td>
<td>63 (18.0)</td>
<td>67 (30.6)</td>
<td></td>
</tr>
<tr>
<td>With family</td>
<td>278 (79.4)</td>
<td>149 (68.0)</td>
<td>0.002</td>
</tr>
<tr>
<td>Assisted living</td>
<td>2 (0.6)</td>
<td>3 (1.4)</td>
<td>0.378</td>
</tr>
<tr>
<td>Insurance status, n (%)</td>
<td></td>
<td></td>
<td>0.520</td>
</tr>
<tr>
<td>Nonprivate</td>
<td>148 (42.7)</td>
<td>99 (45.4)</td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td>199 (57.4)</td>
<td>119 (54.6)</td>
<td></td>
</tr>
<tr>
<td>Insurance type, n (%)</td>
<td></td>
<td></td>
<td>0.413</td>
</tr>
<tr>
<td>Medicaid/Medicare</td>
<td>68 (19.6)</td>
<td>54 (24.8)</td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td>108 (31.1)</td>
<td>61 (28.0)</td>
<td></td>
</tr>
<tr>
<td>Private/Medicare</td>
<td>91 (26.2)</td>
<td>58 (26.6)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>43 (12.4)</td>
<td>19 (8.7)</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>37 (10.7)</td>
<td>26 (11.9)</td>
<td></td>
</tr>
</tbody>
</table>

*χ² test (or Fisher exact test) of association or t test for comparison of means.

Results from this analysis show that compared with their male counterparts enrolled in the WASID trial, women have a higher risk for recurrent ischemic stroke and for the combined end point of stroke or vascular death. In multivariable analyses, adjusting for sociodemographic features, lifestyle, vascular risk factors, angiographic findings, and features of the qualifying event, gender was independently associated with both outcomes, suggesting that these factors could not account for women’s increased risk.

An explanation for our findings is complex and not easily disentangled. Female gender may be a proxy for other factors that are associated with a poor outcome. One such factor is social isolation. Women in this analysis were more likely to be unmarried, widowed, separated/divorced, or living alone. These attributes are markers for social isolation. Social isolation adversely affects health, being positively associated with an increased risk for the onset of a first myocardial infarction, cardiac and all-cause mortality, stroke recurrence, and death after stroke. It is hypothesized that social ties buffer people from the deleterious effects of hardships, traumas, and trials. Social connectedness may also be associated with better compliance with medication, adoption of more positive health behaviors, and greater access to needed resources.

Female gender may also be a proxy for low socioeconomic status. Seventy-five percent of the women in our study had an educational attainment that was at or below high school. Sixty percent were unmarried, 30% widowed, 24% separated/divorced, and 31% were living alone. A low educational attainment level and the state of being unmarried, widowed, separated/divorced, or living alone are highly correlated with a low socioeconomic status. Together, these sociodemographic attributes may be indicative of a group of women who occupy the lower socioeconomic status strata. Such an observation is important because a socioeconomic status gradient has been observed in the risk for stroke, stroke management, and poststroke mortality. Mechanisms for the well-known inverse association between socioeconomic status and health are not fully understood, but are thought to include reduced consumption of health information and lower levels of health literacy, more deleterious health behaviors, reduced access to resources, and greater exposure to psychosocial stress and depression.

It is important to note that women had a greater clustering of risk factors that were indicative of metabolic abnormalities (eg, high body mass indexes, hypertension, and diabetes) and those that portend increased risk based on sociodemographic features, lifestyle, and family history of stroke. Therefore, the results might have been due to a confluence of adverse baseline factors through which recurrent stroke and vascular death was the final common pathway.

Another potential explanation for the higher risk for stroke in women in this study is vessel size. Women may have smaller intracranial arteries than men, which could pose a greater risk for stroke in the territory of a stenotic intracranial artery. Recent WASID analyses showed that women compared with men had a greater, although marginally statisti-
cally significant, risk for ischemic stroke in the territory of the symptomatic intracranial artery. 25

Recent evidence of a gender-based survival bias among acute myocardial infarction patients may also help to explain the shorter vascular event-free survival among women. The findings have been conflicting at times, but studies have reported higher short-term mortality rates among women with acute myocardial infarction compared with men.26,27 The reasons for decreased short-term survival in women are not well understood. The greater incidence of diabetes in women and its adverse cardio-

vascular effects has been implicated. This hypothesis has been confirmed in some studies,28,29 but not in others,30,31

It is important to discuss the limitations and strengths of this analysis. A potential weakness is that data concerning lifestyle and medical and familial histories were self-reported and therefore are subject to the inherent biases of this method of data collection, ie, social desirability and inaccuracies resulting from poor recall. A strength of this analysis is the prospective data collection in the WASID study—a design that permits strong evidence of the relationship between

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Men, N=350</th>
<th>Women, N=219</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol drinking, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>170 (48.6)</td>
<td>60 (27.4)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>180 (51.4)</td>
<td>159 (72.6)</td>
<td></td>
</tr>
<tr>
<td>Physical activity level, n (%)</td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Sedentary</td>
<td>71 (20.3)</td>
<td>76 (34.7)</td>
<td></td>
</tr>
<tr>
<td>Minimal</td>
<td>183 (52.3)</td>
<td>98 (44.8)</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>76 (21.7)</td>
<td>42 (19.2)</td>
<td></td>
</tr>
<tr>
<td>Vigorous</td>
<td>20 (5.7)</td>
<td>3 (1.4)</td>
<td></td>
</tr>
<tr>
<td>Smoking status, n (%)</td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Current</td>
<td>77 (22.0)</td>
<td>44 (20.1)</td>
<td></td>
</tr>
<tr>
<td>Former</td>
<td>182 (52.0)</td>
<td>64 (29.2)</td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>91 (26.0)</td>
<td>111 (50.7)</td>
<td></td>
</tr>
<tr>
<td>Body mass index, kg/m², mean (SD)</td>
<td>28.3 (4.9)</td>
<td>29.3 (5.7)</td>
<td>0.030</td>
</tr>
<tr>
<td>Systolic blood pressure, mm Hg, mean (SD)</td>
<td>139.0 (16.4)</td>
<td>141.1 (18.0)</td>
<td>0.162</td>
</tr>
<tr>
<td>Diastolic blood pressure, mm Hg, mean (SD)</td>
<td>77.9 (9.9)</td>
<td>75.2 (10.8)</td>
<td>0.002</td>
</tr>
<tr>
<td>Plasma HDL cholesterol, mg/dL, mean (SD)</td>
<td>41.5 (11.3)</td>
<td>49.0 (15.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>Plasma LDL cholesterol, mg/dL, mean (SD)</td>
<td>121.3 (36.2)</td>
<td>126.8 (41.4)</td>
<td>0.131</td>
</tr>
<tr>
<td>Total cholesterol, mg/dL, mean (SD)</td>
<td>193.8 (40.2)</td>
<td>211.5 (47.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Triglycerides, mg/dL, mean (SD)</td>
<td>162.8 (111.0)</td>
<td>178.0 (109.7)</td>
<td>0.136</td>
</tr>
<tr>
<td>History of hypertension, n (%)</td>
<td></td>
<td></td>
<td>0.067</td>
</tr>
<tr>
<td>Yes</td>
<td>285 (81.9)</td>
<td>192 (87.7)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>63 (18.1)</td>
<td>27 (12.3)</td>
<td></td>
</tr>
<tr>
<td>History of diabetes, n (%)</td>
<td></td>
<td></td>
<td>0.057</td>
</tr>
<tr>
<td>Yes</td>
<td>122 (35.0)</td>
<td>94 (42.9)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>227 (65.0)</td>
<td>125 (57.1)</td>
<td></td>
</tr>
<tr>
<td>History of coronary artery disease, n (%)</td>
<td>105 (30.4)</td>
<td>46 (21.7)</td>
<td>0.024</td>
</tr>
<tr>
<td>Yes</td>
<td>240 (69.6)</td>
<td>166 (78.3)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>233 (69.4)</td>
<td>158 (73.2)</td>
<td></td>
</tr>
<tr>
<td>History of lipid disorders, n (%)</td>
<td></td>
<td></td>
<td>0.337</td>
</tr>
<tr>
<td>Yes</td>
<td>127 (38.8)</td>
<td>104 (50.2)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>200 (61.2)</td>
<td>103 (49.8)</td>
<td></td>
</tr>
<tr>
<td>Family history of stroke, n (%)</td>
<td></td>
<td></td>
<td>0.010</td>
</tr>
<tr>
<td>Yes</td>
<td>143 (44.6)</td>
<td>98 (47.8)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>178 (55.4)</td>
<td>107 (52.2)</td>
<td></td>
</tr>
</tbody>
</table>

*χ² test of association or t test for comparison of means.
HDL indicates high-density lipoprotein; LDL, low-density lipoprotein; MI, myocardial infarction.
gender and the outcomes. However, the generalizability of these findings may be limited since patients were mostly drawn from university medical centers and recruited according to strict eligibility criteria of a clinical trial. For this reason, replication in population-based studies is needed. Other strengths include the use of conventional angiography to assess intracranial stenosis and the use of objective criteria to determine the end points.

Compared with men, women with symptomatic intracranial arterial stenosis are at significantly greater risk for recurrent ischemic stroke and for the combined end point of stroke or vascular death. These findings are contrary to expectation and emphasize the need to shift our perception of gender disparities in cerebrovascular disease. Equally important, they call for action to reduce the stroke burden among women and to improve their chances for survival. Disability, dementia, and death are common stroke sequelae. Findings from our analysis suggest that the stroke burden in women might be particularly high.

There are other implications of our findings. They suggest the need to ensure adequate numbers of women in clinical trials designed to explore new and promising therapies for intracranial arterial stenosis. Clinically, they suggest the need for vigorous screening of risk factors and for aggressive management of risk factors and stroke in women. From a public health perspective, they suggest the need for more effective broad-based interventions directed at the primary prevention of risk factors. In the context of a generally poor prognosis for intracranial arterial stenosis and the current climate of uncertainty regarding optimal therapy, primary prevention of the risk factors is urgently needed.

TABLE 3. Angiographic Findings and Features of the QE by Gender

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Men, N=350</th>
<th>Women, N=219</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe (70%–99%) stenosis, n (%)</td>
<td></td>
<td></td>
<td>0.203</td>
</tr>
<tr>
<td>Yes</td>
<td>136 (39.5)</td>
<td>75 (34.7)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>209 (60.5)</td>
<td>141 (65.3)</td>
<td></td>
</tr>
<tr>
<td>Symptomatic vessel, n (%)</td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Anterior</td>
<td>169 (49.7)</td>
<td>138 (65.4)</td>
<td></td>
</tr>
<tr>
<td>Posterior</td>
<td>171 (50.3)</td>
<td>73 (34.6)</td>
<td></td>
</tr>
<tr>
<td>Symptomatic vessel, n (%)</td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Internal carotid artery</td>
<td>78 (22.9)</td>
<td>41 (19.4)</td>
<td></td>
</tr>
<tr>
<td>Middle cerebral artery</td>
<td>89 (26.2)</td>
<td>90 (42.7)</td>
<td></td>
</tr>
<tr>
<td>Vertebral artery</td>
<td>80 (23.5)</td>
<td>27 (12.8)</td>
<td></td>
</tr>
<tr>
<td>Basilar artery</td>
<td>75 (22.1)</td>
<td>37 (17.5)</td>
<td></td>
</tr>
<tr>
<td>Combination</td>
<td>18 (5.3)</td>
<td>16 (7.6)</td>
<td></td>
</tr>
<tr>
<td>QE, n (%)</td>
<td></td>
<td></td>
<td>0.043</td>
</tr>
<tr>
<td>TIA</td>
<td>148 (42.3)</td>
<td>74 (33.8)</td>
<td></td>
</tr>
<tr>
<td>Stroke</td>
<td>202 (57.7)</td>
<td>145 (66.2)</td>
<td></td>
</tr>
<tr>
<td>Time from QE to enrollment, days, mean (SD)</td>
<td>30.4 (28.0)</td>
<td>29.2 (28.1)</td>
<td>0.593</td>
</tr>
<tr>
<td>Antithrombotic medication at QE, n (%)</td>
<td></td>
<td></td>
<td>0.575</td>
</tr>
<tr>
<td>Yes</td>
<td>181 (51.7)</td>
<td>118 (54.1)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>169 (48.3)</td>
<td>100 (45.9)</td>
<td></td>
</tr>
</tbody>
</table>

*χ² test of association or t test for comparison of means. QE indicates qualifying event.

Figure 1. The product limit estimate of the cumulative probability of ischemic stroke according to gender (P=0.0053, log-rank test).

Figure 2. The product limit estimate of the cumulative probability of stroke (ischemic or hemorrhagic) or vascular death according to gender (P=0.017, log-rank test).
TABLE 4. HRs for the Association between Gender and Outcomes (n=510)

<table>
<thead>
<tr>
<th>Regression Models</th>
<th>Ischemic Stroke</th>
<th>Combined End Point of Stroke or Vascular Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1 (unadjusted)</td>
<td>1.56 (1.04,2.35)</td>
<td>1.37 (0.94,2.00)</td>
</tr>
<tr>
<td>Model 2 (age, race/ethnicity, history of hypertension, history of diabetes, cigarette smoking, history of lipid disorders)</td>
<td>1.40 (0.91,2.16)</td>
<td>1.24 (0.83,1.84)</td>
</tr>
<tr>
<td>Model 3 (model 2 with marital status, drinking, physical activity, BMI, diastolic blood pressure, history of coronary artery disease, anterior vs posterior circulation, qualifying event [TIA or stroke])</td>
<td>1.76 (1.09,2.84)</td>
<td>1.50 (0.96,3.32)</td>
</tr>
<tr>
<td>Model 4 (model 3 with severe stenosis, time from qualifying event, NIH Stroke Scale)</td>
<td>1.85 (1.14,3.01)</td>
<td>1.58 (1.01,2.48)</td>
</tr>
</tbody>
</table>

*The HR for women to men.

Appendix

Administrative Structure and Participants

Operations Committee
M. Chimowitz, M. Lynn, H. Howlett-Smith, B. Stern, V. Hertzberg, G. Cotsonis. Emory University, Atlanta, Ga.

Clinical Coordinating Center (CCC)
M. Chimowitz, H. Howlett-Smith, A. Calcaterra, N. Yarb, B. Stern, Department of Neurology, Emory University, Atlanta, Ga.

Statistical Coordinating Center (SCC)
M. Lynn, V. Hertzberg, G. Cotsonis, S. Swanson, T. Tutu-Gxashe, N. Freret, L. Lu, A. Kosinski, P. Griffin, Department of Biostatistics, Emory University, Rollins School of Public Health, Atlanta, Ga.

Pharmacy Coordinating Center (PCC)
C. Chester, W. Asbury, S. Rogers. Pharmacy Department, Emory University Hospital, Atlanta, Ga.

Steering Committee

Scientific Advisory Committee

Central Neuroradiologists
H. Cloft, P. Hudgins, F. Tong

Neurology Adjudication Committee
L. Caplan, D. Anderson, V. Miller

Cardiology End Point Committee
L. Sperling, W. Weintraub, J. Marshall, S. Manoukian

Statistical Consultant
B. Tilley

Anticoagulation Consultant
J. Ansell

Internal Safety Monitor
K. Smith

Internal Clinical Event Monitor
J. Khan

NIH/NINDS Liaison
B. Radziszewska, J. Marler

Performance and Safety Monitoring Committee (PSMC)
W. Powers, J. Thompson, R. Simon, L. Brass, K. Furie, M. Walker

Clinical Sites (listed in descending order of enrollment)

Emory University
M. Chimowitz, B. Stern, M. Frankel, O. Samuels, H. Howlett-Smith, N. Yarab, J. Braimah, S. Sailor-Smith, B. Asbury, C. Chester. Supported in part by NIH grant M01 RR00039 from General Clinical Research Center at Emory University

Wayne State University
S. Chaturvedi, S. Levine, R. Van Stavern, D. Wiseman, J. Andersen, A. Sampson-Haggood

University of Pennsylvania

University of Rochester
C. Benesch, S. Burgin, J. Zentner, S. Bean, D. Cole

Cleveland Clinic Foundation

University of Pittsburgh
L. Wechsler, J. Gebel, S. Goldstein, T. Jovin, S. DeCesare, B. Harbison, R. Bernstein

University of Miami
J. Romano, A. Forteza, N. Campo, M. Concha, S. Koch, A. Ferreira

University of California, San Diego/San Diego VA Medical Center

MetroHealth Medical Center, Cleveland
J. Hanna, M. Winkelman, A. Liskay, M. Schella, N. Lewayne, L. Guillon, N. Thakore. Supported in part by NIH grant 5M01 RR00080 from Case University, MetroHealth Medical Center, General Clinical Research Center

University of California, San Francisco/San Francisco General Hospital
C. Hemphill, W. Smith, M. Farrant, L. Hewlett, S. Fields. Supported in part by NIH grant M01 RR00083-42 from the General Clinical Research Center at San Francisco General Hospital
Williams et al

Gender and Outcomes in Intracranial Stenosis 2061

Vancouver General Hospital
A. Woolfenden, P. Teal, C. Johnston, D. Synnot, J. Busser

Johns Hopkins Medical Center
R. Wityk, E. Aldrich, R. Llinas, K. Lane, S. Rice, J. Alt, L. White, T. Traill. Supported in part by NIH grant M01 RR00052 from the General Clinical Research Center at The Johns Hopkins University School of Medicine

Saint Louis University
S. Cruz-Flores, J. Selhorst, E. Leira, E. Holzemer, J. Armbruster, H. Walden, T. Olsen

Stanford Stroke Center

University of South Alabama

Indiana University
A. Bruno, A. Sears, T. Pettigrew, J. D. Fleck, A. M. Lopez-Yunez, W. J. Jones. Supported in part by NIH grant 5M01RR000750-32 from the General Clinical Research Center at Indiana University School of Medicine

University of Texas Southwestern

Neurological Institute of Savannah
E. LaFranchise, W. Widener, S. Reel, R. Maddox, D. Rice

University of Florida, Jacksonville
S. Silliman, W. Ray, K. Ballew, D. Darracott, K. Robinson, K. Malcolm

Upstate Medical University
A. Culebras, M. Vertino, M. Dean, J. Ayers

Henry Ford Hospital

University of Virginia

Melbourne Internal Medicine Associates, Florida
B. Dandapani, W. Sunter, D. Mogle, N. Scallon-Andrews, R. Vicari

Long Island Jewish Medical Center
R. Libman, R. Benson, R. Bhatnagar, R. Gonzaaga-Camfield, Y. Grant, T. Kwiatkowski, K. Alagappan

University of California, Los Angeles

New England Medical Center
D. Thaler, T. Scandura, L. Douglass, M. Libenson

Maine Medical Center
J. Belden, D. Diconzio-Fanning, A. Carr, W. Allan

Mt. Sinai Medical Center

Louisiana State University
R. Kelley, S. Jaffe, P. Jinks, A. Pajean, Y. Wang, S. Larson, A. Booth, M. Middlebrook

Cedars-Sinai/VA West Los Angeles
S. N. Cohen, T. Krauss, T. Jolly, L. Date, G. Abedi, M. Valmonte, L. Lee, A. Song, M. Wells. Supported in part by NIH grant M01 RR00425 from the General Clinical Research Center at Cedars-Sinai Hospital

University of Texas, Houston
J. Grotta, M. Campbell, S. Shaw, R. Boudreaux, J. Hickey

Medical College of Georgia
F. Nichols, M. Sahm, A. Kutlar

Boston University
C. Kase, V. Babikian, N. Allen, H. Lau, J. Ansell, M. McDonough, M. Brophy, G. Barest

Evanston Hospital
R. Munson, D. Homer, T. McGinn, B. Small, A. Feinberg, B. Shim

Ohio State University
A. Slivka, Y. Mohammad, P. Notestine, L. Marcy

University of Arizona

Field Neuroscience Institute, Saginaw
F. Abbott, K. Gaines, K. Leedom, S. Beyer

Rochester General Hospital

St. Luke’s/Roosevelt Hospital Center
J. Nasrallah, S. Azhar, E. Latwis-Viellette, A. Cameron

Oregon Stroke Center

Rush-Presbyterian, St. Luke’s Medical Center
M. Schneck, M. Sloan, K. Whited, D. Frame, G. Ruderman

Marshfield Clinic
P. Karanjia, C. Kidwell, D. Liebeskind, K. Mancl, K. Madden, C. Matti, M. Bachhuber, W. Thorne

Ochsner Foundation Clinic & Hospital
R. Felberg, A. Cole, K. Fitzpatrick, K. Mckinley, S. Deitelzweig, C. Frisard

Beth Israel Deaconess Medical Center
C. Chaves, I. Linfante, C. Horkan, L. Barron, P. Ryan, D. Tarsey

University of Michigan
S. Hickenbottom, K. Maddox, A. Ahmed, H. Tamer

Scripps Clinic
M. Kalafut, J. Kappelman, M. Perlman, M. Lewis

University of Kentucky
C. Pettigrew, D. Taylor, H. Sabet, B. McIntosh

St. Thomas Medical Plaza West, Nashville
C. Johnson, M. Kaminski, L. Hill, D. Pitts, A. Naftilan

Cleveland Clinic Florida
B. Dandapani, V. Salanga, R. Patino-Pauo, M. Piccarillo, M. Grove, R. Rosenthal

Harbin Clinic
M. Sloan, L. Shuler, S. Vaughan, B. Chacko

Medical College of Ohio
G. Tietjen, A. Korsnack, S. Scotton

Duke University
M. Alberts, L. Goldstein, G. Edwards, B. Thames

University of Mississippi
Y. Mohammad, C. Roach, T. Martin, J. King
Texas Tech
D. Hurst, M. Tindall, K. Beasley, R. Sleeper

Williamson Medical Center, Franklin, Tennessee
K. Gaines, C. Johnson, H. Kirchner, B. Sweeney, K. Haden, M. Abbate, K. Gateley

Central Arkansas VA
S. Nazarian, W. Metzer, E. Eppersson, P. Sanders, B. Powell

University of California, Davis
P. Verro, N. Rudislil, A. Kelly-Mesineo, J. Branch, L. Ramos

University of Maryland
M. Wozniak, S. Kittner, N. Zappala, S. Haines, A. Seitzman-Siegel. Supported in part by grant M01 RR165001 from the General Clinical Research Center at the University of Maryland

Sources of Funding
This research was funded by a research grant (IR01 NS36643, Principal Investigator: M.I.C.) from the US Public Health Service, National Institute of Neurological Disorders and Stroke (NINDS), grant 1 K24 NS050307 (to M.I.C.) from the NIH/NINDS, and grant support from NINDS and the National Eye Institute (grant U 10EY013287; to M.I.). In addition, the following General Clinical Research centers, funded by the National Institutes of Health, provided local support for the evaluation of patients in the trial: Emory University (M01 RR00039), Case Western University, Metro-Health Medical Center (5M01 RR00080), San Francisco General Hospital (M01 RR00083–42), Johns Hopkins University School of Medicine (M01 RR00052), Indiana University School of Medicine (5M01 RR000750–32), Cedars-Sinai Hospital (M01 RR00425), and the University of Maryland (M01 RR165001).

Disclosures
M.I.C. reports being paid fees by the Bristol-Myers Squibb/Sanofi Pharmaceuticals Partnership, Astra-Zeneca, and the Sankyo Lilly Partnership for consulting on antithrombotic agents that were not evaluated in this trial, and from Guidant Corporation for consulting on a medical device (an intracranial stent) that was not evaluated in this trial. The remaining authors report no conflicts.

References
Gender Differences in Outcomes Among Patients With Symptomatic Intracranial Arterial Stenosis
Janice E. Williams, Marc I. Chimowitz, George A. Cotsonis, Michael J. Lynn and Salina P. Waddy
for the WASID Investigators

Stroke. 2007;38:2055-2062; originally published online May 31, 2007;
doi: 10.1161/STROKEAHA.107.482240

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2007 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/38/7/2055

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/