Toll-like Receptor Polymorphisms and Carotid Artery Intima-Media Thickness

To the Editor:

Chronic inflammation represents a hallmark of atherosclerosis. Thus, there is growing interest in the role of innate immune defense mechanisms in arterial plaque formation, and several studies directly implicate signaling by toll-like receptors (TLRs) in the pathogenesis of atherosclerosis. However, these links are not completely understood, and further studies determining the clinical relevance of TLRs in atherosclerosis are clearly needed.

We thus read with interest the article of Labrum et al.1 In a large prospective setting they studied 2 single nucleotide polymorphisms in TLR-2 (Arg753Gln) and TLR-4 (Asp299Gly) and their association with the progression of intima-media thickness. The study did not confirm previous smaller studies demonstrating that there are significant associations between genetic variation in these two TLRs and increased intima-media thickness.

Because TLRs have been recognized as pivotal receptors for innate immune recognition, there have been several studies in which healthy as well as defined patient populations were screened for polymorphisms in tlrl or tl4 genes. To date, results have been inconclusive.1,2 Although we subscribe to the view of Labrum et al that these polymorphisms may not be associated with development and course of atherosclerosis, we prefer a more functional explanation that may also clarify to some extent the heterogeneous results obtained so far.

It has been reported that two cosegregating variants of TLR4 attenuate LPS signaling and are accompanied by LPS hyporesponsiveness.3 However, further studies revealed other genes and receptors to be clearly involved in modulating the response to lipopolysaccharides.4 Moreover, recent studies reported that heterozygous polymorphisms of TLR-2 (Arg753Gln) and TLR-4 (Asp299Gly) do not suffice to alter the response of monocytes exposed to lipoteichoic acid and lipopolysaccharides, respectively.4–6 In the study of von Aulock et al,7 even an individual who was homozygous for a TLR-4 polymorphism showed no difference in responses to lipopolysaccharides as compared with wild-type individuals. Finally, it has been claimed that these TLR polymorphisms represent functional knockouts of lipoteichoic acid and lipopolysaccharide signaling. Hence, growing evidence suggests that alternative LPS-recognizing molecules may compensate TLR signaling in the case of TLR-2 (Arg753Gln) and TLR-4 (Asp299Gly).7 Apart from the functional relevance, the overall low incidence of individuals with homozygous polymorphisms (<1%) makes these polymorphisms a risk factor of lesser demographic importance.2

In summary, recent research has clearly demonstrated the important role of innate immunity in the development of atherosclerosis. However, with respect to the aforementioned arguments, we believe that comparing TLR-2 and TLR-4 polymorphisms with a macroscopic surrogate marker like intima-media thickness may be beyond the possibilities of these single features. Further studies are needed to define the role of intact TLR signaling in the initiation and progression of atherosclerosis.

Disclosures

None.

Philipp M. Lepper, MD
Department of Intensive Care Medicine
University of Bern (Inselspital)
Bern, Switzerland

Maximilian von Eynatten, MD
Department of Nephrology
Technical University of Munich
Munich, Germany

Per M. Humpert, MD
Department of Internal Medicine I and Clinical Chemistry
University of Heidelberg
Heidelberg, Germany

Martha Triantafilou, PhD
Kathy Triantafilou, PhD
Infection and Immunity Group
University of Sussex
Brighton, UK

Toll-like Receptor Polymorphisms and Carotid Artery Intima-Media Thickness
Philipp M. Lepper, Maximilian von Eynatten, Per M. Humpert, Martha Triantafilou and Kathy Triantafilou

Stroke. 2007;38:e50; originally published online May 17, 2007;
doi: 10.1161/STROKEAHA.107.487058

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2007 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/38/7/e50

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Stroke* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office.
Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Stroke* is online at:
http://stroke.ahajournals.org//subscriptions/