Less Autoregulation and More Flow in Subarachnoid Hemorrhage

To the Editor:

We read with interest the article by Jaeger et al1 published in the March issue of Stroke. In that article, tissue tension of oxygen (P$_{ti}$O$_2$) has been used as a surrogate marker of cerebral blood flow. After subarachnoid hemorrhage, in some patients a correlation (measured as the moving linear correlation coefficient, ORx) was found between changes in cerebral perfusion pressure (CPP) and corresponding changes in P$_{ti}$O$_2$, whereas in others this correlation was not detected. The absence of correlation was interpreted as a sign of preserved autoregulation, because a constant “flow” was measured despite CPP variations; more importantly, the patients who showed a correlation, measured as a positive ORx, had more delayed infarctions.

We congratulate with the brilliant use of monitored parameters to explore delicate mechanisms of vascular regulation, but we propose a few remarks.

Vasospasm is a frequent complication of subarachnoid hemorrhage, causing hyperperfusion and delayed ischemic damage. When the vessel’s caliber is pathologically reduced but not abolished by vasospasm, a CPP increase may restore, at least partially, flow.2,3 In this situation, therefore, a parallel increase of CPP and P$_{ti}$O$_2$ will indicate successful therapy rather than a deleterious loss of autoregulation. Conversely, a persistently low P$_{ti}$O$_2$ despite active increase of CPP (by vasopressors, for example) could indicate extreme spasm and failing therapy, rather than preserved autoregulation.

This has been tested in patients with acute brain damage,4 in subarachnoid hemorrhage cases,2 and in head-injured patients,4–6 in whom a significant P$_{ti}$O$_2$ increase caused by CPP augmentation has been documented and interpreted as a successful flow restoration. In the specific situation of patients with vasospasm submitted to active CPP increase, cases responsive to treatment could be categorized as cases with “lost autoregulation,” whereas cases not responding, and therefore more severe and condemned to ischemia, could be interpreted as cases with preserved autoregulation.

The second remark concerns the spatial limitation of P$_{ti}$O$_2$ monitoring. P$_{ti}$O$_2$ represent a balance between oxygen delivery and consumption in a very small volume of tissue, in the order of few cubic millimeters. We are reluctant to extend the findings of a focal measurement to the rest of the cerebral tissue, especially when delayed infarction develops distant from the probe’s position. If a high ORx is detected far from the infarction, it is difficult to explain why the tissue with impaired autoregulation will remain “healthy” but will predict infarction elsewhere.

Finally, P$_{ti}$O$_2$ depends on various physiological parameters; for example, it varies widely depending on arterial oxygen tension and temperature.7 Moreover, changes in arterial CO$_2$ tension could affect vascular resistance. In various situations, quite common during the intensive care unit course, ORx calculation could be influenced by P$_{ti}$O$_2$ changes not exclusively related to vascular autoregulation.

We think that these remarks do not antagonize the data and the reasoning of our German colleagues. Perhaps they suggest additional ways, with potential clinical implications, of interpreting their findings.

Disclosures

None.

Nino Stocchetti, MD
Angelo Colombo, MD
Istituto Anestesia e Rianimazione Università di Milano
Terapia Intensiva Neuroscienze
Fondazione IRCCS—Ospedale Maggiore Policlinico
Mangiagalli, Regina Elena
Milano, Italy

Less Autoregulation and More Flow in Subarachnoid Hemorrhage
Nino Stocchetti and Angelo Colombo

Stroke. 2007;38:e69; originally published online June 21, 2007;
doi: 10.1161/STRKEAHA.107.487033
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2007 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/38/8/e69

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published
in *Stroke* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office.
Once the online version of the published article for which permission is being requested is located, click
Request Permissions in the middle column of the Web page under Services. Further information about this
process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Stroke* is online at:
http://stroke.ahajournals.org//subscriptions/