Is the Stroke Belt Worn From Childhood?
Current Knowledge and Future Directions

Aiman El-Saed, MD, PhD; Lewis H. Kuller, MD, DrPH

More than 4 decades ago, Borhani reported excess stroke mortality risk in the southeastern states of the US, the “Stoke Belt”. Since then, none of the many reasons proposed adequately explained the phenomenon. Many studies have failed to adequately explain geographic differences in stroke risk using traditional stroke risk factors measured later in life. There are 3 possible reasons why the traditional stroke risk factors failed to account for the higher stroke risk in the Stroke Belt states. First, the measurement of the risk factors may be inadequate. For example, higher blood pressure level, the most important single determinant of stroke risk, was measured in previous studies at only 1 or even several points in time, usually in middle aged or older adults. The integrated level of blood pressure from childhood or young adulthood to older ages and their adverse effects on vascular disease may be a more important determinant. Second, previous studies typically did not take into account the differential effects of treatment of the risk factors, not only including the likelihood that individuals are placed on various therapies to lower blood pressure or other risk factors but also, most important, adherence to such therapies and reduction of these risk factors. Third, there may be other still unidentified risk factors more prevalent in the southeastern states that make them carry this high risk of stroke mortality to their residents.

Supporting the concept of duration of exposure, we have previously reported in older individuals from the Cardiovascular Health Study that higher white matter grade on brain MRI, a marker of cumulative exposure and control of several stroke risk factors, explained 25% of the observed differences in stroke incidence among the 4 centers of the study. Another approach to evaluating the concept of duration of exposure is to evaluate whether earlier life exposures in the Stroke Belt are associated with increased stroke risk. Using local state mortality data and 1990 US census data, a couple of US studies examined the relation between Stroke Belt early-life mortality data and 1990 US census data, a couple of US states that make them carry this high risk of stroke mortality to their residents.

The opinions in this editorial are not necessarily those of the editors or of the American Heart Association.

From the Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pa.
Correspondence to Aiman El-Saed, MD, PhD, University of Pittsburgh, Health Studies Office, 130 N. Bellefield Ave, Rm 429, Pittsburgh, PA 15213. E-mail ames30@pitt.edu

See related article, pages 2415–2421.

© 2007 American Heart Association, Inc.

Stroke is available at http://stroke.ahajournals.org
DOI: 10.1161/STROKEAHA.107.487405

PA 15213. E-mail amest30@pitt.edu

Stroke is available at http://stroke.ahajournals.org
DOI: 10.1161/STROKEAHA.107.487405
ment, and finally inadequate power of some subanalysis by sex and birth cohort.

The study by Glymour and colleagues 9 is important in making a valuable contribution to our understanding of Stroke Belt etiology by suggesting that the determinants of high stroke risk probably begin in childhood. Unfortunately, the data cannot separate the above 3 critical hypotheses related to high stroke risk in the southeastern states. A next step, therefore, might be to focus efforts in trying to determine whether there are differences in stroke risk factors, particularly early onset ones, as well as micro- and macronutrients among children and young adults in the southeastern states compared with the rest of the nation. For example, there has been some suggestion that low birth weight, 10, 11 poor weight gain early in life 12 and low parental socioeconomic status at the time of birth, 13 as measures of prenatal and early postnatal nutritional and environmental exposures, may be associated with an excess risk of stroke. Moreover, dietary factors such as high salt intake or low intake of potassium 14 in childhood and young adulthood may be associated with an earlier onset of elevated blood pressure which could be associated with greater subclinical vascular disease and consequently stroke risk later in life. Increased left ventricular hypertrophy, microalbuminuria, elevated creatinine and cystatin-C levels and microvascular retinopathy in the eye may all be markers for long-standing elevated blood pressure and should be evaluated in further studies. In summary, the findings from this study and previous and ongoing studies to explain high stroke risk in the southeastern US suggest that greater emphasis is needed in studying the evolution of vascular disease in high and low risk areas in children and younger adults.

Disclosures

None.

References

Key Words: cerebrovascular diseases \textbullet} children \textbullet} epidemiology \textbullet} etiology \textbullet} geography \textbullet} risk factors \textbullet} mortality
Is the Stroke Belt Worn From Childhood?: Current Knowledge and Future Directions
Aiman El-Saed and Lewis H. Kuller

Stroke. 2007;38:2403-2404; originally published online August 2, 2007;
doi: 10.1161/STROKEAHA.107.487405
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2007 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/38/9/2403

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/