Evidence for the Efficacy of NXY-059 in Experimental Focal Cerebral Ischaemia Is Confounded by Study Quality

Malcolm R. Macleod, PhD, FRCP; H. Bart van der Worp, MD, PhD; Emily S. Sena, BSc; David W. Howells, PhD; Ulrich Dirnagl, MD, PhD; Geoffrey A. Donnan, MD, FRACP

Background and Purpose—The neutral results of the SAINT II trial have again highlighted difficulties translating neuroprotective efficacy from bench to bedside. Animal studies are susceptible to study quality biases, which may lead to overstatement of efficacy. We report the impact of study quality on published estimates of the efficacy of NXY-059 in animal models of stroke.

Methods—We conducted a systematic review and stratified meta-analysis of published studies describing the efficacy of NXY-059 in experimental focal cerebral ischemia.

Results—Overall, NXY-059 improved infarct volume by 43.3% (95% CI, 34.7 to 52.8). Only 2 of 9 publications reported randomization, concealment of treatment allocation, and blinded outcome assessment. Studies not reporting these quality items gave substantially higher estimates of efficacy than did higher-quality studies.

Conclusions—The reported efficacy of NXY-059 in animal models of stroke is confounded by low study quality. The failure of SAINT II highlights the need for substantial improvements in the design, conduct, and reporting of animal studies; journals can play an important role in this by adopting standards for animal studies similar to those agreed over 10 years ago for clinical trials. (Stroke. 2008;39:2824-2829.)

Key Words: neuroprotection | NXY-059 | study quality
included articles. Publications reporting outcome as infarct size or neurobehavioral score were selected for further analysis. Briefly, publication details, including study quality, experiments performed, and their reported outcomes, were entered to the CAMARADES database and stratified normalized mean difference DerSimonian and Laird random effects meta-analysis carried out.

The range of evidence supporting the efficacy of NXY-059 was considered against the STAIR criteria,1 which we considered to be 1) recovery of sensorimotor function; 2) recovery of cognitive function; 3) efficacy replicated in 2 laboratories; 4) tested in models of permanent and temporary occlusion; 5) tested in males and females; 6) behavioral outcome measured for at least 1 month; 7) efficacy tested in primates; 8) clinically appropriate route of administration used; and 9) experiments carried out in a “blinded, randomized” fashion.

We were specifically interested in the effects of reported study quality, and therefore we analyzed differences in reported efficacy among studies reporting compliance with each component of our previously published 10-item study quality checklist11 comprising the following requirements: (1) publication in a peer-reviewed journal; (2) statement of control of confounders; and the relationship between reported efficacy and the form in which data are required) be incorporated in this meta-analysis; because these represent a substantial portion of the data for neurobehavioral outcome, this was not analyzed further.

The 9 publications reporting infarct volume described 29 separate experiments and outcome in 408 experimental animals. The median quality score was 5 (interquartile range, 4 to 6); 3 of 9 studies reported random allocation to group, 5 of 9 reported that ischemia was induced by an investigator blinded to treatment allocation, and 4 of 9 studies reported that outcome was assessed without knowledge of treatment group allocation (Table 2).

Overall, NXY-059 improved infarct volume by 43.3% (95% CI, 34.7 to 52.8; Figure 1). Stratifying studies by reported quality score explained a significant proportion of the observed heterogeneity ($\chi^2=55.6$, df=6, $P<0.001$) with reported efficacy being highest in low-quality studies (Figure 2). The effect of reported study quality was also seen with individual quality items. Reported efficacy was significantly lower in studies that reported randomization (20.3% versus 52.8%; $\chi^2=29.1$, df=1, $P<0.001$; Figure 3A); that reported measures taken to conceal treatment allocation from the time of cerebral ischemia up to the time of outcome assessment (25.1% versus 54.0%; $\chi^2=34.1$, df=1, $P<0.001$; Figure 3B); and that reported the use of spontaneously hypertensive rats rather than healthy animals (17.6% versus 47.8%; $\chi^2=29.1$, df=1, $P<0.001$; Figure 3C). Efficacy was significantly higher in studies that reported the use of an anesthetic not previously published data. All 6 abstracts had subsequently been published in full. Taken together, the 11 included studies (Table 1) met all the criteria proposed by the Stroke Academic Industry Roundtable. Nine of 11 studies reported outcome as infarct volume and 4 reported neurobehavioral score.

One neurobehavioral outcome reported by one group in 2 publications (a rabbit small clot embolic stroke model reporting the weight of clot causing a neurological dysfunction in 50% of animals)12,13 could not (for methodological reasons relating to the form in which data are required) be incorporated in this meta-analysis; because these represent a substantial portion of the data for neurobehavioral outcome, this was not analyzed further.

Table 1. Study Characteristic Report

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Species</th>
<th>No. of Animals</th>
<th>Dose Range</th>
<th>Time of Administration, minutes</th>
<th>Anesthetic</th>
<th>Type of Ischemia</th>
<th>Route of Delivery</th>
<th>Outcome Measure(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balogh14</td>
<td>2005</td>
<td>Mouse</td>
<td>14</td>
<td>10 mg/kg</td>
<td>30</td>
<td>Unknown</td>
<td>Permanent</td>
<td>IP</td>
<td>Infarct volume</td>
</tr>
<tr>
<td>Kuroda23</td>
<td>1999</td>
<td>Rat</td>
<td>74</td>
<td>7.5–750 mg/kg</td>
<td>180–480</td>
<td>Halothane</td>
<td>Temporary</td>
<td>IV</td>
<td>Infarct volume</td>
</tr>
<tr>
<td>Lapchak22</td>
<td>2004</td>
<td>Rabbit</td>
<td>189</td>
<td>0.1–100 mg/kg</td>
<td>60–360</td>
<td>Halothane</td>
<td>Thrombotic</td>
<td>IV</td>
<td>Neurological score</td>
</tr>
<tr>
<td>Lapchak24</td>
<td>2002</td>
<td>Rabbit</td>
<td>72</td>
<td>100 mg/kg</td>
<td>5</td>
<td>Unknown</td>
<td>Thrombotic</td>
<td>IV</td>
<td>Infarct volume</td>
</tr>
<tr>
<td>Lapchak24</td>
<td>2002</td>
<td>Rabbit</td>
<td>58</td>
<td>100 mg/kg</td>
<td>5–180</td>
<td>Unknown</td>
<td>Thrombotic</td>
<td>IV</td>
<td>Neurological score</td>
</tr>
<tr>
<td>Marshall25</td>
<td>2003</td>
<td>Marmoset</td>
<td>44</td>
<td>0.9 mg/kg</td>
<td>240</td>
<td>Alphaxalone</td>
<td>Permanent</td>
<td>IV</td>
<td>Infarct volume</td>
</tr>
<tr>
<td>Marshall26</td>
<td>2001</td>
<td>Marmoset</td>
<td>11</td>
<td>0.27 mg/kg</td>
<td>5</td>
<td>Alphaxalone</td>
<td>Permanent</td>
<td>IV</td>
<td>Infarct volume</td>
</tr>
<tr>
<td>Sydserff17</td>
<td>2002</td>
<td>Rat</td>
<td>175</td>
<td>65–1750 mg/kg</td>
<td>5–240</td>
<td>Halothane</td>
<td>Temporary</td>
<td>IV</td>
<td>Infarct volume</td>
</tr>
<tr>
<td>Yoshimoto28</td>
<td>2002</td>
<td>Rat</td>
<td>38</td>
<td>120–750 mg/kg</td>
<td>180</td>
<td>Halothane</td>
<td>Temporary</td>
<td>IV</td>
<td>Infarct volume</td>
</tr>
<tr>
<td>Yoshimoto29</td>
<td>2002</td>
<td>Rat</td>
<td>20</td>
<td>720 mg/kg</td>
<td>125–180</td>
<td>Halothane</td>
<td>Temporary</td>
<td>IV</td>
<td>Infarct volume</td>
</tr>
<tr>
<td>Zhao10</td>
<td>2001</td>
<td>Rat</td>
<td>30</td>
<td>750 mg/kg</td>
<td>5</td>
<td>Halothane</td>
<td>Permanent</td>
<td>IV</td>
<td>Infarct volume</td>
</tr>
</tbody>
</table>

Results

Systematic search identified 216 “hits” (PubMed, 77; EMBASE, 123; BIOSIS, 16) of which 56 studies (112 hits) were identified in 2 databases. After screening of electronic abstracts, 21 full publications and 6 abstracts were considered potentially relevant and the full publications retrieved. Of the full publications, 8 were not relevant, one reported information also published elsewhere, and one was a re-evaluation of...
known to have intrinsic neuroprotective activity (47.4% versus 4.3%, χ²=29.1, df=1, P<0.001; Figure 3D) than in 2 studies in which the anesthetic was not stated. There was no significant effect of statements reporting control of temperature, the blinding of outcome assessment, sample size calculation, or compliance with animal welfare regulations. All experiments were published after peer review and no publication contained a statement of potential conflicts of interest, so the impact of reporting of these items cannot be assessed.

Discussion

This systematic review and meta-analysis suggests that NXY-059 has substantial efficacy in animal models of ischemic stroke and confirms that when considered together, the animal evidence for NXY-059 meets all of the STAIR criteria. However, there were important differences between studies that did or did not report the use of important methodological safeguards against bias in that studies reporting adherence to these quality items gave significantly lower estimates of efficacy than those that did not.

Why is this literature for NXY-059, which is compliant with the STAIR criteria, the subject of careful evaluation from the industry and subjected to rigorous review so susceptible to bias? First, a nonsystematic review may not have identified all relevant publications (for instance, the paper included here from Bioorganic & Medicinal Chemistry Letters) and so may have given an incomplete appraisal of published data.

Second, efficacy may be overstated due to publication bias; it may be that there are neutral or negative unpublished data that give a more realistic appraisal of the effects of NXY-059; although we are aware that some such data do exist and remain unpublished despite having been submitted for publication, the number of publications is not large enough to test statistically for publication bias. Comparing our data with a systematic review that included such unpublished data and proprietary industry data would demonstrate whether published data have substantially overstated the efficacy of NXY-059.

Third, although the evidence supporting the efficacy of NXY-059 does indeed meet all of the STAIR criteria when considered together, individual studies do not. Those criteria relate not just to the range of evidence, but also to the quality of that evidence; only one publication reported meeting all of the

Table 2. Study Quality Report

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Quality Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balogh14</td>
<td>2005</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Kuroda23</td>
<td>1999</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Lapchak24</td>
<td>2002</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Marshall25</td>
<td>2001</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Marshall25</td>
<td>2003</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Sydserff27</td>
<td>2002</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Yoshimoto28</td>
<td>2002</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Yoshimoto29</td>
<td>2002</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Zhao30</td>
<td>2001</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

Study quality items are (1) publication in a peer-reviewed journal; (2) statement of control of temperature; (3) randomization to treatment or control; (4) blinded induction of ischemia (ie, concealment of treatment group allocation at time of induction of ischaemia); (5) blinded assessment of outcome; (6) avoidance of anaesthetics with marked intrinsic neuroprotective properties; (7) use of animals with hypertension or diabetes; (8) sample size calculation; (9) statement of compliance with regulatory requirements; and (10) statement regarding possible conflicts of interest.

Figure 1. Individual comparisons ranked according to their effect on infarct volume. The shaded gray bar represents the 95% confidence limits of the global estimate. The vertical error bars represent the 95% CIs for the individual estimates.

Figure 2. Effect of number of quality items scored on the estimate of efficacy. The shaded gray bar represents the 95% confidence limits of the global estimate. The vertical error bars represent the 95% CIs for the individual estimates. The size of each point reflects the log of the number of animals contributing to that comparison. Stratification by quality accounts for a significant proportion of the heterogeneity observed between studies (P<0.001).
STAIR criteria relating to study quality. That is not to say that the quality of this literature compares poorly with that for the animal data supporting other treatments for stroke; allocation concealment (55%) and blinded assessment of outcome (44%) were more common here than in systematic reviews of six other interventions (11% and 29%, respectively). The 33% of studies randomizing animals to treatment group was similar to that seen for other interventions (36%).

We do not consider it necessary for each publication to meet each of the STAIR criteria, and we have proposed criteria relating to the range of evidence (which might be represented across different publications) and criteria relating to the quality of evidence (which should be met by every study). Given the small numbers of animals included in individual studies, it might be reasonable to require that each item relating to the range of evidence be replicated in more than one laboratory.

Finally, efficacy may have been overstated due to methodological flaws in individual animal experiments. The data reported here suggest that in particular randomization, allocation concealment, and blinded outcome assessment are important methodological measures, which might reduce bias but which are poorly represented in this literature.

Potential Weaknesses of This Analysis
Because this analysis is based on information extracted from publications, it may be that measures taken to avoid bias have been incompletely described. However, it seems unlikely that such differences in reported (rather than actual) study quality would be associated with differences of the magnitude observed here. In a survey of the authors of 193 publications included in previous systematic reviews of animal stroke studies, questionnaire responses did indeed report somewhat higher rates of, for instance, randomization and blinding than ascertained from the published work, although the response rate was low and probably overstated these differences. In addition, respondents misunderstood the meaning of certain key terms; for instance, some authors reported randomization being achieved by the animals “being chosen at random from the cage.”

Clearly, not all items of the CAMARADES study quality checklist are of equal importance. A meta-analysis of meta-analyses has confirmed important roles for both allocation concealment and the use of animals with relevant comorbidities, whereas the impact of randomization and the blinded assessment of outcome is not yet clear. Metaregression of data from individual animal experiments should provide further information to guide the refinement of study quality checklists.

We have only been able to present data for infarct volume, and this is a consequence of our use of normalized mean difference meta-analysis. In this technique, the outcome (infarct volume or neurobehavioral score) in normal (unlesioned) animals is set to 0, and the outcome observed in

Figure 3. Influence of (A) randomization to experimental group; (B) concealment of treatment group allocation during the experiment; (C) blinding of outcome assessment; and (D) hypertension on the estimate of efficacy. The shaded gray bar represents the 95% confidence limits of the global estimate. The vertical error bars represent the 95% CIs for the individual estimates. The width of each vertical bar reflects the log of the number of animals contributing to that comparison. In A, B, and D, the stratification accounts for a significant proportion of the heterogeneity observed between studies ($P<0.001$).
lesioned but untreated controls is set to 1. The outcome in the treatment group is then expressed on the scale thus defined with values less than 1 representing an improvement in outcome (eg, “x”). From this we can calculate a percentage improvement in outcome \(\% = 100 \times (1 - x)\) and we can express this as percentage improvement in neurobehavioral score or reduction in infarct volume. This calculation requires that we know the outcome both in unlesioned untreated controls and in lesioned untreated controls. With regard to the neurobehavioral data presented in the publications of Lapchak et al., there are no data for outcome in unlesioned untreated animals because the outcome measure depends on the amount of clot causing a neurobehavioral deficit in 50% of animals and therefore requires the presence of a lesion. For this reason we have been unable to analyze neurobehavioral outcomes, although we believe that such an analysis would be valuable.

An alternative approach would be to use standardized mean difference meta-analysis, in which differences are scaled according to the variance of the estimates. However, although this approach is justified when sample size is large (like with clinical trials), when sample size is small (the median sample size for these studies, including those excluded studies reporting neurobehavioral outcome, was 8), the observed SD reflects the population SD with less fidelity, which introduces further error to the analysis, and this makes the observed SD reflects the population SD with less fidelity, although we believe that such an analysis would be valuable.

Implications for Future Animal Studies

Although other factors may of course confound the apparent association between the reporting of methodological safeguards against bias and low reported efficacy, the most plausible explanation is that this relationship is causal. These observations highlight the need for more detailed reporting of the measures taken to avoid bias.

A further important implication for the design of future studies is that unbiased estimates of efficacy are likely to be substantially lower than previously considered important; such high-quality studies should therefore be powered to detect improvements in infarct volume in the range of 10% to 20%.

Other Potential Reasons for the Failure of NXY-059 in Clinical Trials

There may be other reasons why the efficacy reported in animals was not seen in clinical trials. First, it may be that the clinical trials were false-negative because of the play of chance or because they tested efficacy in the wrong group of patients or at the wrong time. For instance, the median time to treatment in these animal studies was 145 minutes compared with a mean delay from symptom onset to the initiation of treatment in SAINT II of 228 minutes. The neurobehavioral studies of Lapchak et al reported that improvement in neurobehavioral outcome seen at earlier time points was not seen when treatment was initiated 3 or 6 hours after vessel occlusion.12,13

Second, evidence from healthy animals may not generalize to humans with comorbidities; the SAINT II study included 77% patients with a history of hypertension,2 yet in the animal literature, only 7% of animals were hypertensive; in these animals, efficacy was significantly lower than in normotensive animals.

Third, the outcome measures used in these animal studies may not be relevant to human disease. Most studies used TTC staining to measure infarct volume, but the extent to which this reflects true infarct volume has been questioned.18,19 Moreover, the extent to which reduction in infarct volume in small animals might predict efficacy in the much larger human brain is not clear. Behavioral outcomes might represent more appropriate indicators of efficacy, but few studies reported neurobehavioral outcomes and for methodological reasons, it was not possible to analyze those data. However, across a range of candidate neuroprotective drugs, neurobehavioral outcome does not give a substantially lower estimate of efficacy than does infarct volume; although for nicotinamide, efficacy was indeed lower for neurobehavioral outcomes,11 for tirilazad, it was higher16; and for melatonin, tissue plasminogen activator and hypothermia, there was no difference.20–22

The failure of the SAINT studies to show significant benefit has brought into question the usefulness of the STAIR criteria for animal stroke studies. We believe these data suggest that the criteria should indeed be amended, first to require that all studies include methodological measures to avoid bias (as outlined by Sena et al) and second, that a systematic review of all data be conducted before proceeding to clinical trial. Although adopting such measures is unlikely in itself to lead to the seamless translation of efficacy from animal studies to clinical trial, we do believe that the more precise knowledge of the quality of supporting animal data and the conditions of maximum efficacy in animal models would provide a more secure basis for decisions regarding the development of stroke drugs.

Source of Funding

This work was supported in part by a Translational Medicine award from the Scottish Chief Scientist Office.

Disclosures

None.

References

Evidence for the Efficacy of NXY-059 in Experimental Focal Cerebral Ischaemia Is Confounded by Study Quality
Malcolm R. Macleod, H. Bart van der Worp, Emily S. Sena, David W. Howells, Ulrich Dirnagl and Geoffrey A. Donnan

Stroke. 2008;39:2824-2829; originally published online July 17, 2008; doi: 10.1161/STROKEAHA.108.515957
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/39/10/2824

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/