Higher ABCD² Score Predicts Patients Most Likely to Have True Transient Ischemic Attack

S. Andrew Josephson, MD; Stephen Sidney, MD, MPH; Trinh N. Pham, MA; Allan L. Bernstein, MD; S. Claiborne Johnston, MD, PhD

Background and Purpose—Some patients diagnosed with transient ischemic attack (TIA) in the emergency department may actually have alternative diagnoses such as seizure, migraine, or other nonvascular spells. The ABCD² score has been shown to predict subsequent risk of stroke in patients with TIA diagnosed by emergency physicians, but perhaps high ABCD² scores simply separate those patients with true TIA from those with alternative diagnoses. We investigated this hypothesis in a cohort of patients with TIA identified in the emergency department whose records were reviewed by an expert neurologist.

Methods—Among patients diagnosed by emergency physicians with TIA in 16 hospitals in the Kaiser-Permanente Medical Care Plan over a 1-year period ending February 1998 (before publication of prediction rules), an expert neurologist reviewed all records for those in which the diagnosis of TIA was considered questionable by a medical records analyst and determined whether the spell was likely to represent a true TIA. Subsequent strokes within 90 days were identified. ABCD² scores were calculated for all patients and 2-sided Cochran-Armitage trend tests were used to assess subsequent risk of stroke.

Results—Of the 713 patients reviewed by the expert neurologist, 642 (90%) were judged to likely have experienced a true TIA. Ninety-day stroke risk was 24% (95% CI, 20% to 27%) in the group judged to have experienced a true TIA and 1.4% (0% to 7.6%) in the group judged to not have a true TIA (P<0.0001). ABCD² scores were higher in those judged to have a true TIA compared with others (P=0.0001). In the group judged to have a true TIA, 90-day stroke risk increased as ABCD² score increased (P<0.0001); there was no relationship between ABCD² score and stroke risk in those judged unlikely to have had a TIA (P=0.73).

Conclusions—Among patients diagnosed by emergency department physicians with TIA, higher ABCD² score was associated with a greater likelihood that the diagnosis was confirmed on expert review. The predictive power of the ABCD² model is therefore partially explained by identification of those patients likely to have experienced a true TIA, an important aspect of the score when used by nonneurologists. However, higher ABCD² scores still remained predictive of 90-day stroke rate in the group of patients judged to have a true TIA by an expert neurologist. (Stroke. 2008;49:3096-3098.)

Key Words: stroke • TIA

Patients with transient ischemic attack (TIA) have a substantial short-term risk of recurrent stroke.¹ Multiple prediction models have been proposed to help clinicians risk-stratify these patients, and the unified ABCD² score has been shown to be most predictive of short-term recurrence.¹⁻³ Use of these prediction models now may have increased importance with recent studies demonstrating that aggressive treatment of TIA can reduce the rate of subsequent stroke.⁴⁻⁵

TIA remains a diagnosis primarily based on history, and some patients identified as having TIA may actually have alternative diagnoses that can mimic TIA such as seizure, migraine, or other nonvascular spells. In fact, agreement about the diagnosis of TIA between neurologists reviewing the same cases is mediocre.⁶⁻⁷ We hypothesized that widely used risk stratification models may, in part, simply be identifying those patients most likely to have true TIA as opposed to these alternative diagnoses. If this were the case, it would follow that those with high scores (and therefore true TIA) would be most likely to have recurrent stroke, and those with low scores (and therefore likely not true TIA) would have lower rates of subsequent stroke because their initial
event was not cerebrovascular in nature. We tested this theory using a cohort of patients diagnosed by emergency physicians, before publication of prediction rules, whose records were reviewed by an expert neurologist.

Methods

All patients diagnosed with TIA in the emergency department of 16 hospitals in the Kaiser-Permanente Medical Care Plan over a 1-year period ending February 1998 (before publication of prediction rules) were included, as previously detailed.1 The treating emergency department physician assigned the diagnosis of TIA in all of these patients. Patients were followed for subsequent stroke within the 90 days after presentation, and strokes were confirmed by 2 neurologists. A medical records analyst identified all patients in whom the diagnosis of TIA was considered questionable, generally due to a qualifying adjective (eg, “possible TIA” or “rule-out TIA”) or due to the vague nature of symptoms. An expert neurologist, blinded to outcome, reviewed the charts of these patients and determined if the spell was likely to represent a true TIA. ABCD2 scores were calculated for all patients and 2-sided Cochrane-Armitage trend tests were used to assess subsequent risk of stroke. All statistical calculations were made using SAS (Version 9.1; Cary, NC).

Results

Among 1707 patients diagnosed by emergency department physicians with TIA, 713 patients with questionable TIA were reviewed by the expert neurologist (42%) and 642 (90%) were judged likely to have experienced a true TIA as opposed to an alternative diagnosis. Alternative diagnoses included syncope (n=22), peripheral vestibulopathy (11), migraine (9), anxiety (9), seizure (5), medication toxicity (5), neuropathy (4), transient global amnesia (2), hypertensive encephalopathy (2), and dementia (2). Distributions of ABCD2 scores in the groups and number of patients experiencing subsequent stroke in each group within 90 days are shown in the Table. Overall 90-day stroke risk was 24% (95% CI, 20% to 27%) in the group judged to have experienced a true TIA, and 1.4% (0 to 7.6%) in the group judged not likely to have a true TIA (P<0.0001). ABCD2 scores were higher among those judged to have had a true TIA on expert review (P=0.0001). In the group judged to have had a true TIA, 90-day stroke risk increased as ABCD2 score increased (P<0.0001); there was no relationship between ABCD2 score and stroke risk in those judged unlikely to have had a TIA (P=0.73).

Discussion

The ABCD2 score can, as intended, identify patients with TIA at highest and lowest risk for recurrent stroke.3 This study demonstrates that ABCD2 scores were higher among patients considered to have had a true TIA on retrospective neurologist review compared with those patients thought to have had an alternative diagnosis. Therefore, the predictive power of the ABCD2 model can be partially explained by identification of those patients likely to have experienced a true TIA, an important aspect of the score when used by nonneurologists. Low ABCD2 scores, with their resulting low risk of subsequent stroke, may identify those patients less likely to have experienced a true TIA (and more likely to have had an alternative etiology that mimics a focal ischemic event). Higher ABCD2 scores still remained predictive of 90-day stroke risk in the group of patients who were judged to have a true TIA by a neurologist, suggesting that the score may still have stratification value in the hands of experts.

This study has a number of limitations, including the fact that not every patient’s chart in the cohort was reviewed by the expert neurologist. The overall rate of 90-day stroke (21%) in the reviewed group was higher than the previously published rate of 10.5% in the entire cohort studied, indicating that the patients reviewed were not a representative sample.1 Another limitation of this study is that the expert review relied on retrospective examination of the medical record. TIA likelihood judgments may have changed if a
neurologist prospectively reviewed each case; however, risk stratification models have been shown to be predictive in cohorts of patients defined in a similar retrospective manner.3

Disclosures
None.

References
Higher ABCD² Score Predicts Patients Most Likely to Have True Transient Ischemic Attack
S. Andrew Josephson, Stephen Sidney, Trinh N. Pham, Allan L. Bernstein and S. Claiborne Johnston

Stroke. 2008;39:3096-3098; originally published online August 7, 2008;
doi: 10.1161/STROKEAHA.108.514562
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/39/11/3096

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Stroke* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Stroke* is online at:
http://stroke.ahajournals.org//subscriptions/