Letters to the Editor

Stroke welcomes Letters to the Editor and will publish them, if suitable, as space permits. They should not exceed 750 words (including references) and may be subject to editing or abridgment. Please submit letters in duplicate, typed double-spaced. Include a fax number for the corresponding author and a completed copyright transfer agreement form (available online at http://stroke.ahajournals.org and http://submit-stroke.ahajournals.org).

Reducing Stroke In-Hospital Mortality: Organized Care Is a Complex Intervention

To the Editor:

We read with great interest the article by Saposnik et al regarding the escalating levels of access to in-hospital care and stroke mortality.1 Many authors agree that the management of the patients in stroke care units has been the most substantial advance in stroke care; however, the mechanism by which the stroke care unit management improves outcomes remains uncertain.2 Therefore, in their article Saposnik et al argued that the stroke unit admission does not automatically imply receiving comprehensive care and appropriate interventions, and they analyzed the impact of the organized care in stroke mortality. We suggest that this issue should be further analyzed.

We conducted an observational study to this purpose. Retrospective data were collected with standard report forms from the medical records of 253 consecutive patients admitted for ischemic strokes in 29 Italian hospitals in June 2004. Patients with hemorrhagic strokes and transient ischemic attacks were excluded. Stroke in-hospital mortality was selected as the primary outcome and dependency at discharge measured using the Functional Independence Measure as the secondary outcome. We described patient outcomes according to gender, comorbidities (based on their Charlson-Deyo index patients were categorized as having 0 to 1 or >1 comorbidities), medical complications (at least one complication), admission in stroke unit (yes or no), access to organized care (based on organized care index as having 0 to 1 or >1 score), management by a stroke team (yes or no), team clinical expertise (level of knowledge of the evidence) and use of antithrombotic drugs (antiplatelet or anticoagulant during the stay). χ² and Fisher exact test were used for categorical variables. Differences in the rate of in-hospital deaths and of dependency at discharge according to each variable under study were also evaluated at individual level using random-effects logistic regression.

Overall in-hospital stroke mortality was 19.76%. In detail we observed the following unadjusted odds ratios (OR): gender, male 0.51 (95% CI, 0.24 to 1.07; P=0.054); comorbidities 2.28 (95% CI, 0.92 to 5.93; P=0.054); medical complications 8.59 (95% CI, 3.90 to 19.24; P<0.001); stroke unit 0.17 (95% CI, 0.24 to 0.45; P<0.001); organized care 0.19 (95% CI, 0.09 to 0.41; P<0.001); stroke team 0.12 (95% CI, 0.05 to 0.27; P<0.001); team clinical expertise 0.13 (95% CI, 0.05 to 0.33; P<0.001); antithrombotic therapy 0.33 (95% CI, 0.16 to 0.67; P=0.008). In the multivariable analysis the management of the patients by stroke teams (OR=0.25, 95% CI, 0.07 to 0.85; P=0.025), the use of antithrombotic therapy (OR=0.26, 95% CI, 0.09 to 0.73; P=0.009) and medical complications (OR=6.40, 95% CI, 2.30 to 17.82; P<0.001) remained independent predictors of in-hospital mortality.

Regarding dependency at discharge we observed the following unadjusted OR: gender, male 0.58 (95% CI, 0.26 to 1.30; P=0.154); comorbidities 3.03 (95% CI, 1.62 to 5.67; P<0.001); medical complications 3.59 (95% CI, 1.31 to 10.62; P=0.005); stroke unit 0.20 (95% CI, 0.10 to 0.43; P<0.001); organized care 0.18 (95% CI, 0.06 to 0.49; P<0.001); stroke team 0.46 (95% CI, 0.24 to 0.87; P=0.01); team clinical expertise 0.84 (95% CI, 0.41 to 1.72; P=0.605); antithrombotic therapy 0.24 (95% CI, 0.08 to 0.65; P=0.0015). In the multivariable analysis stroke unit (OR=0.21, 95% CI, 0.08 to 0.55; P=0.0015), the use of antithrombotic therapy 0.21 (95% CI, 0.05 to 0.97; P=0.044), comorbidities (OR=2.58, 95% CI, 1.11 to 6.01; P=0.027) and medical complications 8.51 (95% CI, 1.09 to 66.52; P=0.040) remained independent predictors of dependency at discharge.

In conclusion, we think that our data adds further evidence in favor of the argument that stroke patients are best served by a comprehensive and specialized inpatient care and not by individual interventions. This kind of approach could be defined as a complex intervention in which a number of separate elements are essential to the proper functioning of the intervention but the “active ingredient” that is effective is difficult to specify.1 In fact, the management of patients affected by stroke involves the expertise of several professionals, which can result in poor coordination or inefficiencies in patient treatment, and organized care can significantly improve the outcomes of these patients. However, the active ingredient of organized care still remains unclear, and further studies focused on the evaluation of complex interventions are needed to help to understand which mechanisms within the organization can really improve the quality of stroke care.

Disclosures

None.

Massimiliano Panella, MD
Department of Clinical and Experimental Medicine
University of Eastern Piedmont “A. Avogadro”
Novara, Italy

Romeo Brambilla, MD
Department of Public Health
University of Turin
Torino, Italy

Sara Marchisio, MD
Francesco Di Stanislao, MD
Department of Hygiene and Public Health
University “Politecnica delle Marche”
Ancona, Italy


Reducing Stroke In-Hospital Mortality: Organized Care Is a Complex Intervention
Massimiliano Panella, Romeo Brambilla, Sara Marchisio and Francesco Di Stanislao

Stroke. 2008;39:e186; originally published online September 18, 2008;
doi: 10.1161/STROKEAHA.108.533877
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/39/11/e186

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/