Microcatheter Contrast Injections During Intra-Arterial Thrombolysis May Increase Intracranial Hemorrhage Risk

Pooja Khatri, MD; Joseph P. Broderick, MD; Jane C. Khoury, PhD; Janice A. Carrozzella, RN; Thomas A. Tomsick, MD; for the IMS I and II Investigators

Background and Purpose—During intra-arterial revascularization, either guide catheter injections of contrast in the neck or microcatheter contrast injections (MCIs) at or beyond the site of an occlusion, can be used to visualize intracranial vasculature. Neurointerventionalists vary widely in their use of MCIs for a given circumstance. We tested the hypothesis that MCIs are a risk factor for intracranial hemorrhage (ICH) in the Interventional Management of Stroke (IMS) I and II trials of combined intravenous/IA recombinant tissue plasminogen activator therapy.

Methods—All arteriograms with M1, M2, and ICA terminus occlusions were reanalyzed (n=98). The number of MCIs within or distal to the target occlusion was assigned. Postprocedure CTs were reviewed for contrast extravasation and ICH. Contrast extravasation was defined as a hyperdensity suggestive of contrast (Hounsfield unit >90) seen at 24 hours or present before 24 hours and persisting or replaced by ICH at 24 hours.

Results—In this IMS subset, the rate of any ICH was 58% (57 of 98). More MCIs were seen in the ICH group (median=2 versus 1; P=0.04). Increased MCIs were associated with higher ICH rates (P=0.03). MCIs remained associated with ICH in multivariable analysis (P=0.01) as did baseline CT edema/mass effect, atrial fibrillation, time to intravenous recombinant tissue plasminogen activator initiation, and Thrombolysis in Cerebral Infarction reperfusion score. MCIs were also associated with contrast extravasation in unadjusted and adjusted analyses.

Conclusions—MCIs may risk ICH in the setting of combined intravenous/intra-arterial recombinant tissue plasminogen activator therapy, possibly due to contrast toxicity or pressure transmission by injections. MCIs should be minimized whenever possible. These findings will be tested prospectively in the IMS III trial. (Stroke. 2008;39:3283-3287.)

Key Words: acute stroke ■ cerebral infarct ■ interventional neuroradiology ■ intracerebral hemorrhage ■ thrombolytic Rx

As the use of intra-arterial (IA) therapy for acute ischemic stroke becomes widespread in the United States,¹ the analysis of procedural factors that may have an impact on clinical outcome is critical.

During an IA intracranial revascularization procedure, contrast material can be injected either through a guide catheter in the neck or through an intracranial microcatheter at or beyond the site of an occlusion. Microcatheter contrast injections (MCIs) are used to identify the proximal thrombus, confirm catheter placement within the thrombus, or visualize the vasculature distal to an occlusive thrombus. Specific circumstances may necessitate at least one MCI for acute revascularization. For example, at least one MCI beyond a proximal ICA occlusion may be required to determine the location of the distal symptomatic occlusion. Revascularization with the MERCI device also requires one MCI for identifying the distal aspect of the thrombus before its attempted retrieval. On the other hand, some cases require no MCIs for acute thrombolytic revascularization. Neurointerventionalists vary widely in their practice regarding how often they routinely perform MCIs, at times using many MCIs in a single case.

Based on anecdotal experience, we hypothesized that MCIs may be a risk factor for intracranial hemorrhage (ICH) either indirectly by causing contrast extravasation with toxicity to the blood–brain barrier or directly by causing traumatic injury of the blood–brain barrier and microvasculature through the pressure effects of these injections. If MCIs are indeed a risk factor for ICH, minimizing their use would be warranted.

Therefore, we reanalyzed cases from the Interventional Management of Stroke (IMS) I and II trials of combined intravenous (IV)/IA recombinant tissue plasminogen activator (rtPA)²-³ to (1) determine if MCIs are an independent risk factor for ICH; and (2) explore the association of MCIs with contrast extravasation (CEx).

Methods
The IMS I and II trials were designed to test the safety of combined low-dose intravenous rtPA (0.6 mg/kg) followed by delivery of

Received April 14, 2008; accepted May 5, 2008.
From the Department of Neurology (P.K., J.P.B.), the Department of Radiology (T.A.T., J.A.C.), and the Department of Environmental Health (J.C.K.), University of Cincinnati Academic Health Center, Cincinnati, Ohio.
Correspondence Pooja Khatri, MD, Department of Neurology, University of Cincinnati Academic Health Center, 260 Stetson Street, Suite 2308, PO Box 670525, Cincinnati, OH 45267-0525. E-mail pooja.khatri@uc.edu
© 2008 American Heart Association, Inc.
additional IA rtPA (up to 22 mg) at the site of symptomatic occlusion in patients with moderate-to-large (National Institutes of Health Stroke Scale score \geq10) ischemic strokes treated within 3 hours of symptom onset. In the IMS II trial, IA rtPA was delivered in the setting of low-energy ultrasound through the EKOS MicroLyisis® Microinjection Catheter whenever possible. Heparin was administered after identification of a treatable lesion as a 2000 U IV bolus followed by a 450-U/h IV infusion and discontinued at the end of the IA procedure. Contrast material type and volume were not systematically recorded.

For this analysis, all arteriograms with M1, M2, and internal carotid artery (ICA) terminus occlusions from these 2 trials were reanalyzed (n=98). Cases treated with only IV therapy were excluded. Based on available imaging, the number of MCIs within or distal to the target occlusion was assigned for every case. All available postprocedure CTs were reviewed for CEx and ICH. CEx was defined as a hyperdensity suggestive of contrast (Hounsfield unit \geq50) seen at 24 hours or present before 24 hours and persisting or replaced by ICH at 24 hours. CEx was considered as distinct from contrast enhancement, defined as a hyperdensity that cleared within 24 hours based on definitions published by Yoon et al.4 It should be noted that these terms (contrast extravasation versus deposition) have been used synonymously in some of the stroke literature. ICHs were radiologically categorized by ECASS criteria as: (1) hemorrhagic infarction type 1 (HI-1), small petechiae along the margins of the infarct; (2) hemorrhagic infarction type 2 (HI-2), more confluent petechiae within the infarcted area, but without space-occupying effect; (3) parenchymal hematoma type 1 (PH-1), a hematoma in $<$30% of infarcted area with some slight space-occupying effect; and (4) parenchymal hematoma type 2 (PH-2), a dense hematoma $>30\%$ of the infarcted area with substantial space-occupying effect, or as any hemorrhagic lesion outside the infarcted area.44

Statistical analyses of the locked IMS I and II databases were performed using SAS statistical software, version 9.1. Two primary multivariable analyses were performed: (1) an ICH prediction model; and (2) a CEx prediction model. For each model, variables were tested in univariate analysis using either t tests or Wilcoxon rank sum tests for continuous variables or χ^2/Fisher exact tests for categorical variables. Tested covariables were: number of MCIs, baseline CT with edema or mass effect, baseline National Institutes of Health Stroke Scale score, history or new diagnosis of atrial fibrillation, time to IV treatment, age, glucose (continuous), Thrombolysis in Cerebral Infarction reperfusion gradient, baseline systolic blood pressure, history of diabetes mellitus, arterial occlusive lesion recanalization score,4 proximal ICA occlusion, IA procedure duration, baseline international normalized ratio, total IA rtPA dose, site of symptomatic occlusion (ICA, middle cerebral artery [MCA] 1, MCA2, MCA3), and ultrasound delivery. Variables significant ($P<0.25$) in univariate analysis were considered as potential covariables in logistic regression analyses. A backward elimination approach was used to find the most parsimonious model, and then variables were re-entered into the model individually to assess their effects on the independent variable of interest.

On further consideration of the results, we also decided to test the association between MCIs and 3-month clinical outcome in multivariable analysis. The same covariables were assessed using the same criteria for inclusion as in the previously described models, and good clinical outcome was defined as modified Rankin Score ≤ 2.

Results

In this subset of cases from the IMS I and II trials, the rate of any intracranial (ICH) hemorrhage was 58% (57 of 98). The rate of PH2s in this subset was 10% (10 of 98). The median number of MCIs was 2, and the frequency of their use varied widely between cases (range, 0 to 12).

Relationship Between Microcatheter Contrast Injections and Intracranial Hemorrhage

Unadjusted analyses showed more MCIs in the ICH group (median=2) compared with the non-ICH group (median=1; $P=0.04$) as displayed in Figure 1. Cases with increased numbers of MCIs were associated with higher rates of ICH ($P=0.03$; Figure 2). After excluding proximal ICA occlusions (n=7), which often necessitate at least one MCI, increased MCIs still showed a trend toward an association with increased ICH rates ($P=0.08$).

Covariates with potential significance in univariate testing (and therefore considered in the model) were baseline CT with edema or mass effect, baseline National Institutes of Health Stroke Scale score, history or new diagnosis of atrial fibrillation, time to IV treatment, age, glucose (continuous), Thrombolysis in Cerebral Infarction reperfusion score, baseline systolic blood pressure, history of diabetes mellitus, and site of symptomatic occlusion (Table 1). Because there was only one subject with an M3 occlusion, this case was excluded from the multivariable analysis. MCIs remained associated with ICH after adjustment for significant ICH risk factors (Table 2).

Relationship Between Microcatheter Contrast Injections and Contrast Extravasation

Median MCIs were 3.5 in the CEx group (n=18) and 1.0 in the non-CEx group (n=80; $P=0.03$). MCIs were associated with CEx after adjusting for the only additional significant covariate of baseline international normalized ratio (OR, 1.60; 95% CI, 1.0 to 2.60; $P=0.02$). All sites in IMS I and II, except for one, reported using only nonionic contrast agents.
Table 1. ORs of ICH for Each Covariable (Univariate Analysis)

<table>
<thead>
<tr>
<th>Covariable</th>
<th>OR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT edema/mass effect</td>
<td>3.92 (1.64–9.37)</td>
<td>0.002</td>
</tr>
<tr>
<td>Vessel of occlusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICA-T</td>
<td>10.45 (2.81–38.8)</td>
<td>0.002</td>
</tr>
<tr>
<td>MCA-M1 branch</td>
<td>2.79 (1.05–7.47)</td>
<td>0.04</td>
</tr>
<tr>
<td>MCA-M2 branch</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>No. of MCIs (categorized as 0, 1–2,</td>
<td>1.48 (1.03–2.12)</td>
<td>0.03</td>
</tr>
<tr>
<td>3–4, 5+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time to IV rtPA initiation (increasing 15-minute intervals)</td>
<td>1.02 (1.00–1.03)</td>
<td>0.03</td>
</tr>
<tr>
<td>Baseline NIHSS score</td>
<td>1.10 (1.00–1.20)</td>
<td>0.05</td>
</tr>
<tr>
<td>Age</td>
<td>1.03 (1.00–1.07)</td>
<td>0.05</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>2.43 (0.91–6.49)</td>
<td>0.08</td>
</tr>
<tr>
<td>Degree of recanalization success (scored as TICI 0, 1, 2, 3)</td>
<td>0.65 (0.40–1.06)</td>
<td>0.09</td>
</tr>
<tr>
<td>Baseline blood glucose, mg/dL</td>
<td>1.01 (1.00–1.02)</td>
<td>0.16</td>
</tr>
<tr>
<td>Baseline systolic blood pressure, mm Hg</td>
<td>1.01 (0.99–1.03)</td>
<td>0.17</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>2.01 (0.58–6.93)</td>
<td>0.27</td>
</tr>
<tr>
<td>Proximal ICA occlusion</td>
<td>1.87 (0.34–10.17)</td>
<td>0.47</td>
</tr>
<tr>
<td>Ultrasound delivery</td>
<td>1.28 (0.51–3.18)</td>
<td>0.60</td>
</tr>
<tr>
<td>IA procedure duration</td>
<td>1.00 (0.99–1.01)</td>
<td>0.67</td>
</tr>
<tr>
<td>Total IA rtPA dose</td>
<td>1.01 (0.94–1.08)</td>
<td>0.75</td>
</tr>
<tr>
<td>Baseline INR</td>
<td>0.78 (0.02–37.58)</td>
<td>0.90</td>
</tr>
<tr>
<td>Degree of reperfusion success</td>
<td>1.00 (0.71–1.40)</td>
<td>0.98</td>
</tr>
</tbody>
</table>

NIHSS indicates National Institutes of Health Stroke Scale; TICI, Thrombolysis in Cerebral Infarction; INR, international normalized ratio; AOL, arterial occlusive lesion.

Relationship Between Contrast Extravasation and Intracranial Hemorrhage

As per our definitions, all CEx cases (18 of 18) developed ICH compared with 48% (38 of 80) of non-CEx cases (P<0.0001). In addition, 28% (5 of 18) of CEx cases developed PH2s compared with 9% (7/80) of the non-CEx cases (P=0.02).

Relationship Between Microcatheter Contrast Injections to Clinical Outcome

MCIs were significantly associated with total ICH risk in the setting of IV/IA thrombolysis in this retrospective analysis. The relationship was robust. It was seen when comparing the median number of MCIs among ICH and non-ICH cases. In addition, cases with higher numbers of MCIs had higher rates of ICH, suggesting a “dose-dependent” effect. This relationship remained significant after controlling for additional factors that may affect hemorrhage rates.

Discussion

MCIs were significantly associated with total ICH risk in the setting of IV/IA thrombolysis in this retrospective analysis. The relationship was robust. It was seen when comparing the median number of MCIs among ICH and non-ICH cases. In addition, cases with higher numbers of MCIs had higher rates of ICH, suggesting a “dose-dependent” effect. This relationship remained significant after controlling for additional factors that may affect hemorrhage rates.

Table 2. Independent Risk Factors of ICH in Multivariable Analysis

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>OR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vessel of occlusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICA-T</td>
<td>12.10 (2.12–69.19)</td>
<td>0.005</td>
</tr>
<tr>
<td>MCA-1</td>
<td>4.41 (1.26–15.44)</td>
<td>0.02</td>
</tr>
<tr>
<td>MCA-2</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>6.64 (1.60–27.58)</td>
<td>0.009</td>
</tr>
<tr>
<td>CT edema/mass effect</td>
<td>3.98 (1.27–12.41)</td>
<td>0.02</td>
</tr>
<tr>
<td>No. of MCIs (categorized as 0, 1–2, 3–4, 5+)</td>
<td>1.63 (1.02–2.58)</td>
<td>0.04</td>
</tr>
<tr>
<td>Time to IV rtPA initiation (increasing 15-minute intervals)</td>
<td>1.58 (1.19–2.19)</td>
<td>0.003</td>
</tr>
<tr>
<td>Degree of reperfusion success (scored as TICI 0, 1, 2, 3)</td>
<td>0.54 (0.30–1.05)</td>
<td>0.07</td>
</tr>
</tbody>
</table>

TICI indicates Thrombolysis in Cerebral Infarction.

Potential confounders of the relationship between MCIs and ICH may include a higher frequency of MCIs performed in cases of greater complexity with larger clots or clots more resistant to thrombolysis. We attempted to address these possibilities by controlling for baseline stroke severity (National Institutes of Health Stroke Scale score), the presence of a concurrent extracranial ICA occlusion, IA procedure duration, total rtPA dose, and final revascularization status. The association of MCIs and ICH remained significant after adjustment for these variables.

To have an adequate sample size for multivariable analyses, we only considered the association between MCIs and any ICH as opposed to the known clinically meaningful subtypes of ICH (ie, symptomatic ICH and/or parenchymal hematoma types I and II). Whether milder forms of ICH should be avoided has not been determined and requires further study.

Additional methodological limitations should be noted, although these would not be expected to lead to a systematic bias. Specifically, the number of MCIs for each case may have been undercounted if all the angiographic runs were not recorded and provided to the central reader. In addition, this analysis cannot account for variable techniques used for MCIs in individual cases, including different injection pressures, syringe sizes, contrast bolus volumes, contrast types, and contrast dilutions.

This observed relationship between MCIs and ICH raises the question of its mechanism. We considered the possibility that MCIs may lead to ICH by causing contrast extravasation. Several studies have examined the issue of contrast deposition (extravasation or enhancement) in the brain. It has long been acknowledged that contrast deposition may be identified on postthrombolysis CT scans and misclassified as ICH and may have no untoward effect. However, the literature suggests that ICH in the absence of contrast deposition after IA therapy is less common. Nakano reported that 37 of 77 (48%) patients with stroke exhibited “hyperdense” areas after IA tPA treatment. Eleven of 37 (29.7%) developed symptomatic ICH, and no patient developed ICH in the absence of a hyperdense area. Yokogami et al also suggested a significant...
correlation between postprocedure CT scans with hyperdensity and hemorrhagic complications. Yoon et al formally distinguished CEx from contrast deposition using Hounsfield units and found that extravasation portended a higher symptomatic ICH rate and poorer outcome than did enhancement. They proposed that contrast extravasation may be due to degradation of the basal lamina, whereas contrast enhancement may be due to increased blood–brain barrier permeability. The former disruption would likely be required for hemorrhagic transformation. It is possible that different contrast materials may have different blood–brain permeability effects and tendencies to cause ICH.

Among the contrast deposition studies described here, only that of Nakano et al described local microcatheter injection as part of the IA technique. Their group subsequently reported a relationship between early venous filling demonstrated by MCI arteriography, arising particularly from the lenticulostriate distribution, and both contrast extravasation and hemorrhagic transformation. They pointed out that early veins were primarily seen when contrast material was injected into the ischemic area using MCI rather than guide catheter arteriography. However, a causal link between MCIs and CEx was not proposed by the authors.

We found a statistically significant association between MCI use and contrast extravasation in both adjusted and unadjusted analyses. However, our exploration of the relationship between MCIs and CEx has key limitations. Specifically, Hounsfield units could not be measured in several of the cases due to the availability of only hard-copy films. Furthermore, gradient recalled echo MRI was not available to make these distinctions. Therefore, some cases may have been inaccurately categorized as ICH rather than contrast extravasation, and some cases of CEx may have been overlooked. In addition, cases of contrast extravasation preceding ICH may have been missed because the IMS I and II protocols did not mandate CT imaging before 24 hours from treatment unless clinically indicated. It is well known that contrast hyperdensity diminishes in the first 24 hours and may be reduced to less than 90 Hounsfield units beyond this time. Despite this potential for underestimating CEx, MCIs were associated with this phenomenon in this analysis. It remains possible that CEx may cause ICH through direct toxicity or may be an epiphenomenon of pressure transmission from injections causing blood–brain barrier disruption. If the former is the primary cause, then washing injected contrast with a saline infusion immediately afterward may be beneficial. This may particularly avoid prolonged contrast stagnation in an artery without flow.

Inherent in our definition of contrast extravasation was the likelihood that all cases of contrast extravasation would ultimately be classified as ICH. However, it is notable that significantly more PH2s were seen in the contrast extravasation group compared with the non-CEx group, suggesting that contrast extravasation is a clinically relevant and potentially detrimental phenomenon.

This analysis of ICH risk factors is notable for 2 additional findings. First, time to initiation of IV rtPA therapy (alteplase) was independently associated with ICH in our cohort, replicating prior time observations from the pilot study of duteplase regarding total ICH and from the ATLANTIS Part A trial of alteplase regarding symptomatic ICH. Second, we show that the extent of reperfusion on angiography (Thrombolysis in Cerebral Infarction score) was inversely associated with ICH. These cases with no or minimal reperfusion by the end of the procedure may actually be those with better revascularization at a later time. If so, this would be consistent with prior studies by Molina et al suggesting that late recanalization (beyond 6 hours) is associated with higher rates of total ICH among proximal MCA stroke cases.

Our findings are in contrast to the ICH model developed based on the IMS I trial alone, which suggested that any ICA stenosis or occlusion (versus isolated MCA occlusion) and atrial fibrillation were the only independent risk factors for total ICH. Potential explanations for this different result include the smaller sample size (n=80) and the inclusion of all patients in intention-to-treat group in the IMS I hemorrhage analysis (as opposed to only M1, M2, and ICA terminus occlusions from both IMS I and II in the current analysis).

In conclusion, MCIs were significantly associated with total ICH risk in this retrospective analysis of a cohort of patients treated with combined IV/IA therapy. This may be due to contrast extravasation and its toxicity or possibly pressure transmission from the injections. Our observations regarding contrast extravasation had several limitations and, therefore, cannot be conclusive about the mechanism by which MCIs are associated with ICH. Nevertheless, we suggest that MCIs should be minimized during IV/IA revascularization procedures when optional. This relationship will be tested in additional acute revascularization trial cohorts, including prospectively in the IMS III trial.

Acknowledgments
Clinical Coordinating Center: University of Cincinnati; Canadian Coordinating Center: University of Calgary; Statistical Coordinating Center: Medical University of South Carolina; Clinical Sites, Investigators, and Coordinators: University of Cincinnati, University of Calgary, University of Pittsburgh, Oregon Health Sciences, University of Texas–Houston, Case Western Reserve University, University of California–San Francisco, University of California–Los Angeles, Wayne State University, St Luke’s Hospital of Kansas City, Vancouver General Hospital, University of Alberta–Edmonton, Erlanger Health Care System, University of British Columbia, Henry Ford Hospital, Emory University, St Luke’s Hospital–Mayo, One Site Sutter General Hospital, and Queens University.

Sources of Funding
This study was supported by National Institutes of Health/National Institute of Neurological Diseases and Stroke R01NS39160 and EKOS Corporation in partnership with National Institutes of Health R44HL64434. Genentech supplied the study drug.

Disclosures
J.P.B. and T.A.T. receive drugs and devices from Genentech, Concentric, EKOS, and Johnson & Johnson as co-principal investigators for the ongoing National Institutes of Health-funded IMS III trial. P.K. and J.A.C. also serve on the Executive Committee of this trial. J.P.B. is a consultant for Genentech and Johnson and Johnson.

References

