See related article, pages 373–378.

Stroke progression is a noteworthy phenomenon. It may manifest radiologically, clinically or as both. Several systemic upheavals contribute including cardiovascular dysregulation, blood glucose disturbances and hyperthermia to name just three.¹ No previous studies, however, have really assessed whether any particular stroke location might be especially prone to progression.

In this retrospective study of 61 consecutive patients innocent of reperfusion therapy, Ay et al² show that insular infarction is more prone to radiological extension over a median of 7 days (range 4.5 to 52.5 days) than stroke excluding the insular cortex. The contributions of various confounding variables including stroke volume and vascular territory as well as age and admission blood glucose were assessed using linear regression models.

Why is the insular cortex so attractive in this regard? This previously ill-understood region is a significant site of autonomic and nociceptive representation and integration. Insular strokes are associated with an increased risk of adverse cardiovascular outcomes including sudden death³ correlating with stroke-related cardiovascular autonomic abnormalities.⁴ Additionally, blood glucose dysregulation occurs significantly more frequently with insular stroke location.⁵ It would therefore be entirely reasonable to infer that insular stroke invokes cardiovascular and endocrine changes that compromise cerebral tissue when at its most vulnerable leading to stroke extension.

However, we do not yet know whether these radiological changes are functionally significant because no clinical assessments were reported. Additionally, whether the mechanistic explanations for stroke extension are relevant to the findings of this study is unclear. The authors did not gather blood glucose, inflammatory or cardiovascular data during follow-up. Therefore, some may question whether the location-related radiological changes are truly important. But if you ask me, there is little doubt in my mind that they are.

Disclosures

None.

References


Key Word: radiology
Plus Ça Change …
Stephen Oppenheimer

Stroke. 2008;39:249; originally published online January 3, 2008;
doi: 10.1161/STROKEAHA.107.500967
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/39/2/249

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/