Endothelial Progenitor Cell Research in Stroke
A Potential Shift in Pathophysiological and Therapeutical Concepts

Rob P.W. Rouhl, MD; Robert J. van Oostenbrugge, MD, PhD; Jan Damoiseaux, PhD;
Jan-Willem Cohen Tervaert, MD, PhD; Jan Lodder, MD, PhD

Background and Purpose—Stroke is the leading cause of disability in the Western world; however, few therapies are at hand to decrease this burden.

Summary of Review—Endothelial progenitor cells (EPCs) have been introduced in cardiovascular medicine as factotums. EPCs can repair damaged endothelium and attenuate the development and progression of atherosclerosis. Also, EPCs can form new vessels in ischemic areas and thus promote recovery after ischemic events. In stroke, however, EPC research is limited. In our overview, we provide background information on EPC use as a risk marker and as a potential therapeutic agent.

Conclusion—In our opinion, the lack of EPC studies in stroke should instigate vascular neurologists to participate in EPC research, as EPCs could also change pathophysiological concepts and improve clinical treatments in vascular neurology. (Stroke. 2008;39:2158-2165.)

Key Words: angiogenesis ■ atherosclerosis ■ cerebral infarct ■ endothelium ■ endothelial progenitor cells

Endothelial progenitor cells (EPCs) are immature endothelial cells which circulate in peripheral blood. These cells were first described by Asahara et al.1 In their study, EPCs were isolated from human blood and injected into animals with limb ischemia. Subsequently, EPCs were found in the endothelium of newly formed vessels in ischemic regions, indicating that there are cells in the human blood which were involved in the formation of new vessels after ischemia.

In another study, Griese et al injected EPCs into animals with carotid balloon injury (a model of endothelial damage). After healing of the injury, EPCs were found in the recovered endothelium,2 indicating that EPCs were also involved in the repair of damaged endothelium.

The regenerative potential of EPCs suggested by these findings has led to different clinical studies, based on the following 2 hypotheses: (1) Patients with lower EPC numbers are at higher risk for atherosclerotic events, and (2) patients with ischemic events may benefit from EPC administration.

In the present overview, we will elaborate on these 2 clinical hypotheses and provide background information of EPC characteristics, measurement, and use as a therapeutic agent. We will then focus on EPCs in cerebrovascular disease. Unfortunately, most studies which are published up till now are small and performed in animals or highly selected patients. Therefore, results have to be interpreted with caution.

EPC Characteristics and Measurement
EPCs are maturing cells, derived from immature stem cells. They enter peripheral blood in specific circumstances (see below). They are halfway in their maturation process to become endothelial cells. Therefore, EPCs possess functional and structural characteristics of both stem cells and mature endothelial cells (see Table 1). During their development, EPCs gradually lose stem cell characteristics and progressively gain endothelial cell characteristics. Consequently, the specific set of characteristics of an EPC on a given time point depends on its degree of maturation. For quantification, EPCs must be defined accurately. Therefore, the combination of structural and functional characteristics should be carefully chosen to exclude other immature stem cells or mature endothelial cells.

There are 2 different quantification techniques. First, cell culture (lower part of Figure 1): isolated mononuclear cells from peripheral blood are cultured for several days in conditions which selectively favor growth of EPCs. These conditions include coating of plates with macromolecules like gelatin and addition of endothelial growth factors to the culture medium. Therefore, quantification of EPCs by culture also depends on the EPC function (EPCs have to be viable and to be able to respond to the culture conditions; see Table 1). EPCs form clusters from the third day on, and these clusters are counted after 7 to 28 days. Further testing to confirm the endothelial phenotype of the cells involves...
uptake of acetylated LDL, binding of *Ulex europaeus* lectin, and binding of specific antibodies.\(^1,4\)

The second technique is flow cytometry (upper part of Figure 1): cells are labeled with fluorescent antibodies to EPC surface antigens (see Table 2) and subsequently counted with a flow cytometer. Because EPCs are rare in peripheral blood, the noise to signal ratio has to be minimalized by additional measures,\(^5\) otherwise reliable results cannot be obtained. In contrast to culturing, flow cytometry does not depend on EPC function, but directly measures the number of EPCs. Because of this difference, results are not exchangeable between the 2 techniques.\(^6\)

Although both methods are widely used, techniques are not yet standardized. Recently, Yoder et al\(^7\) demonstrated that only cells which adhere early in culture (within 48 hours) are true EPCs. Only these cells possess endothelial characteristics and ultimately develop into mature endothelial cells. In culture, these cells do not proliferate immediately (only after 1 to 2 weeks), and they are also called “late outgrowth EPCs.”\(^8\) Cells which adhere later than 48 hours (the nonadherent cells in Figure 1) are cells with angiogenic-monocytic

Table 1. Characteristics of Stem Cells and Endothelial Cells Shared by Endothelial Progenitor Cells\(^3\)

<table>
<thead>
<tr>
<th>Stem Cell Characteristic</th>
<th>Endothelial Cell Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presence of the surface</td>
<td>Presence of the surface molecules CD144, CD146, von Willebrand factor, and VEGFR-2</td>
</tr>
<tr>
<td>molecules CD34 and CD133</td>
<td></td>
</tr>
<tr>
<td>Cluster formation in culture</td>
<td>Response (proliferation) to endothelial growth factors in culture</td>
</tr>
<tr>
<td>Highly proliferative</td>
<td>Adhesion to macromolecules</td>
</tr>
<tr>
<td>Resistance to stress</td>
<td>Uptake of acetylated LDL and binding of UEA (Ulex Europaeus Lectin)</td>
</tr>
<tr>
<td></td>
<td>Tube formation of and migration driven by VEGF</td>
</tr>
</tbody>
</table>

Table 2. EPC Surface Markers

<table>
<thead>
<tr>
<th>Markers</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD133* (also called AC133)(^1,14)</td>
</tr>
<tr>
<td>CD34*(^1,13)</td>
</tr>
<tr>
<td>Vascular Endothelial Growth Factor Receptor 2 (VEGFR-2; also called kinase insert domain receptor [KDR])(^1,15)</td>
</tr>
<tr>
<td>CD31 (platelet endothelial cell adhesion molecule or PECAM)(^1,13,15,16)</td>
</tr>
<tr>
<td>CD62E (E-selectin)(^1,16)</td>
</tr>
<tr>
<td>CD144 (vascular endothelial (VE-)cadherin)(^13,15,16)</td>
</tr>
<tr>
<td>von Willebrand factor(^13,15)</td>
</tr>
</tbody>
</table>

Most often used for EPC quantification by flow cytometric analysis.
EPC Biology and Atherosclerosis

The nature of the association between lower EPC numbers and increased risk for cardiovascular events remains speculative. Generally, it is interpreted as a causal one. Because EPC offspring is present in restored endothelium, EPCs are thought to repair damaged endothelium (see Figure 2). Damaged endothelium is, next to ischemia, responsible for EPC recruitment from the bone marrow (see Figure 2). Proinflammatory cytokines, granulocyte-colony stimulating factor, erythropoietin, and apoptotic bodies from endothelial cells all stimulate the release of EPCs into the circulation. Thus, in an acute stage after a vascular event, EPC numbers rise.

In stable clinical condition, however, EPC numbers are influenced by several factors (see Figure 3). Interestingly, lower EPC numbers relate to different atherosclerotic risk factors. It is, therefore, generally assumed that lower EPC numbers reflect a higher consumption of EPCs for restoration of endothelial damage. Indeed, in patients with active vasculitis, a disease with wide-spread endothelial damage, very low EPC numbers are found. Damaged endothelium plays a role in atherosclerotic lesion formation and progression; it stimulates a proatherogenic inflammatory response, mediated by monocytes, macrophages, and T-cells. EPC numbers could therefore be lower as a consequence of a higher consumption, and run relatively short on restoring the damaged endothelium with consequent atherosclerosis and cardiovascular events. Moreover, not only the number of EPCs is related to cardiovascular risk factors but also a disturbed EPC function. This association between lower results on functional EPC tests and atherosclerotic risk factors suggests a disturbance in the EPC itself. However, in a recent population-based study in 542 subjects, higher EPC numbers (counted after 5 days in culture) correlated with lower age and use of cardiovascular drugs. Higher EPC numbers were found in subjects with higher Framingham Risk Scores. This seems to reject the hypothesis that lifestyle and cardiovascular risk factors (indirectly) deplete the EPC resources. However, these results may be explained by a lower expression of risk factors in the study population attributable to the subject selection procedure. Possibly, the result even reflects the healthy status of the participants with a higher potential of EPC production as appropriate compensation mechanism. The authors do not present flow cytometric data; absolute numbers are not exchangeable. Fifth, EPC quantification should not be performed shortly after a vascular event, because EPC numbers rise in response to ischemia (see next paragraph). Therefore, EPC numbers in the stable phase could be more important for risk assessment than in an acute phase after a vascular event. Finally, "normal" values of EPC numbers are unknown. So, we think that implementation of EPC quantification as accurate vascular risk marker in standard medicine will take some time, and published EPC studies need confirmation by more research groups.

Furthermore, other questions have to be answered first: (1) does combination of the 2 EPC quantification techniques result in better risk assessment? (2) is EPC quantification superior to other methods of risk assessment using high sensitivity C-Reactive Protein or Intima-Media Thickness measurements? and (3) is there a pathophysiological mechanism behind the association between lower numbers of EPCs and a higher cardiovascular risk? Finally, it is pivotal to know whether an increase of low EPC numbers will also result in reduction of cardiovascular events. Until these questions are answered, EPC measurement for vascular risk assessment will not be routinely performed in cardiovascular patients.
numbers of EPCs (CD34+/KDR+ cells) could be lower in patients at higher risk, whereas their EPC cluster formation capacity is retained or perhaps even upregulated.

So, although the nature of the association between EPCs and atherosclerosis remains speculative, there is ample evidence suggesting a causal relation.

EPCs in Vasculogenesis

Asahara et al found injected EPCs in the endothelium of newly formed vessels in previously ischemic animal limbs.\(^1\) In other animal experiments, EPC administration also resulted in increased blood flow in ischemic zones and a decrease in limb loss.\(^{15,28,29}\) In experimental cardiac ischemia, administration of progenitor cells (in general) resulted in neovascularization and reduction of the infarcted area, although the involved mechanisms remain a matter of debate.\(^{30}\)

In humans, use of EPC-based therapy during or after ischemia might be hazardous, because EPCs are very similar to hematopoietic progenitor cells,\(^{31}\) and could, therefore, differentiate into monocytes and macrophages. These cells might aggravate ischemia by increasing the ischemic inflammatory response. A safety study in 20 patients with acute myocardial infarction who received EPC transfusion\(^{32}\) addressed this issue and found that the levels of inflammatory markers (CRP and leukocytes) and levels of troponin T (a marker for cardiac ischemia) did not differ from levels in controls 4 days after the intervention. In 34 EPC-treated CAD patients (TOPCARE-CHD study\(^{33}\)), 5 major cardiovascular events occurred in the intervention group, as compared to 3 events in the control group (n=23). Thus, in these small numbers of patients, EPCs neither seem to stimulate the inflammatory response nor increase ischemia. EPC administration might be practiced safely, without EPC therapy-related adverse events, though safety data from larger randomized trials are still needed.

But do higher EPC numbers indeed reverse the consequences of ischemia and improve prognosis? In observational studies in patients with myocardial infarction, higher numbers of EPCs indeed relate to a better prognosis, more myocardial salvage,\(^{34}\) viability and perfusion (as measured by PET and SPECT studies\(^{35}\)), and more collaterals in the ischemic zone.\(^{36}\) Therefore, several investigators planned randomized clinical trials on progenitor cell (PC) administration (among which are EPCs) in CAD. Studies differ, however, on various points: (1) the source of PC (bone marrow or blood; with, or without purification), (2) the use of autologous cells or allogenic donor cells, and (3) the method of administration (intravenously or intracoronary infusion).

Randomized clinical trials in CAD patients show a relation between progenitor cell administration and improved left ventricular function, mainly on the short term.\(^{37}\) In chronic ischemic heart failure, however, effects on change in left ventricular function differ from positive to indifferent.\(^{38}\) Randomized trials have also been performed in patients with peripheral artery disease. These studies found that PC administration improved endothelium-dependent vasodilation,\(^{39}\) ankle brachial index, rest pain, and pain-free walking time.\(^{40}\) However, results are not as positive as those in animals, which is possibly attributable to a higher functional potential of animal EPCs. Direct comparative studies between animal and human EPCs, though, are lacking. Also, in all studies in patients with coronary or peripheral artery disease, bone marrow cells seem superior to purified EPCs.\(^{37}\) This is possibly attributable to the presence of “contamination” with angiogenic cells in this population, thus to the mutual stimulation of CD34− and CD34+ cells, which is not present in purified EPCs (mostly only CD34+ cells).

EPCs as Risk Marker in Stroke

Neurovascular research on EPCs is limited until now. We found only 3 observational studies in patients with stroke.
EPC quantification

Higher number
- Ovarial stimulation / estrogens
- Statins
- Exercise

Number of CD34+/KDR+ cells

Flow cytometry

Lower number
- Peripheral Artery Disease
- Coronary Artery Disease
- Long term statin use
- Number of atherosclerotic plaques
- Higher Intima Media Thickness
- Chronic Renal Insufficiency

Exercise
- Peripheral Artery Disease
- Coronary Artery Disease
- Hyperhomocysteinemia
- Hypercholesterolemia
- Diabetes type I
- Smoking
- Long term statin use
- Reumatoid Arthritis
- Higher Intima Media Thickness
- Chronic Renal Insufficiency

EPC functional testing

Beneficial effect
- Higher HDL levels

True EPC / Slow outgrowth

Adverse effect
- Higher Framingham Risk Score
- Coronary Artery Disease
- Active Wegeners granulomatosis
- Reumatoid arthritis

Angiogenic cells / Rapid outgrowth

EPC of patients who use Ramipril
- Healthy EPC treated in vitro with statins

EPC of patients who use Statins
- Healthy EPC treated in vitro with statins or exercise

EPC of patients who use Statins
- Healthy EPC treated in vitro with statins

EPC of patients who use Ramipril
- Healthy EPC treated in vitro with statins or exercise

EPC of patients who use Ramipril
- Healthy EPC treated in vitro with statins or exercise

EPC of patients who use Ramipril
- Healthy EPC treated in vitro with statins or exercise

EPC of patients who use Ramipril, statins, or exercise
- Healthy EPC treated in vitro with statins or exercise

EPC of patients with Diabetes type II, hypercholesterolemia, reumatoid Arthritis
- Healthy EPC treated in vitro with glucose, CRP, oxLDL, nicotin, and aspirin

EPC of patients with Diabetes type I and II, chronic renal failure
- Healthy EPC treated in vitro with glucose, CRP, oxLDL, nicotin, and aspirin

EPC of patients with Hypercholesterolemia, hyperhomocysteinemia, hypercholesterolemia, chronic renal failure, and reumatoid Arthritis
- Healthy EPC treated in vitro with glucose, CRP, oxLDL, nicotin, and aspirin

EPC of patients with Hypercholesterolemia, hyperhomocysteinemia, hypercholesterolemia, chronic renal failure, and reumatoid Arthritis
- Healthy EPC treated in vitro with glucose, CRP, oxLDL, nicotin, and aspirin

EPC of patients with Hypercholesterolemia, hyperhomocysteinemia, hypercholesterolemia, chronic renal failure, and reumatoid Arthritis
- Healthy EPC treated in vitro with glucose, CRP, oxLDL, nicotin, and aspirin

EPC of patients with Hypercholesterolemia, hyperhomocysteinemia, hypercholesterolemia, chronic renal failure, and reumatoid Arthritis
- Healthy EPC treated in vitro with glucose, CRP, oxLDL, nicotin, and aspirin

EPC of patients with Hypercholesterolemia, hyperhomocysteinemia, hypercholesterolemia, chronic renal failure, and reumatoid Arthritis
- Healthy EPC treated in vitro with glucose, CRP, oxLDL, nicotin, and aspirin

EPC of patients with Hypercholesterolemia, hyperhomocysteinemia, hypercholesterolemia, chronic renal failure, and reumatoid Arthritis
- Healthy EPC treated in vitro with glucose, CRP, oxLDL, nicotin, and aspirin

EPC of patients with Hypercholesterolemia, hyperhomocysteinemia, hypercholesterolemia, chronic renal failure, and reumatoid Arthritis
- Healthy EPC treated in vitro with glucose, CRP, oxLDL, nicotin, and aspirin

EPC of patients with Hypercholesterolemia, hyperhomocysteinemia, hypercholesterolemia, chronic renal failure, and reumatoid Arthritis
- Healthy EPC treated in vitro with glucose, CRP, oxLDL, nicotin, and aspirin

- Chronic Renal Insufficiency

Figure 3. Measurement results in literature (see ref 27 and its references). Note: most data result from small studies in selected subjects.
EPCs may be considered as a marker for endothelial involvement. In atherosclerotic ischemic stroke the pathogenesis of the vascular occlusion is more or less similar to that in coronary and peripheral artery disease. Therefore, EPCs could be a marker of future events in atherosclerotic stroke and a marker of the endothelial repair mechanism. Cardioembolic stroke, though, has a different pathogenesis (with different endothelial involvement), and consequently EPC quantification may be less significant as a risk marker. EPCs might also differentiate between endothelially mediated and nonendothelially mediated causes of stroke.

EPCs as Therapeutic Agent in Stroke

Up till now, studies on EPCs as a therapeutic agent have been reported in animal stroke models. A variety of human cell types (neural stem cells, immortalized neural cell lines, and hematopoietic progenitor cells) have already been tested in animals. Use of cells derived from peripheral blood or bone marrow, among which are the EPCs, has 2 main advantages above the other cell types. First it avoids ethical limitations (because there is no need to work with fetal or embryonic tissue). Second, there is a host of experience on use of hematopoietic progenitor cells in hemat-oncology, and therefore a lot is known about tolerability and side effects of treatment.

In an observational study in mice, higher EPC numbers related to physical exercise, a better functional motor outcome after middle cerebral artery occlusion, increased neovascularization and enhanced blood flow in ischemic zones. In 48 stroke patients, Sobrino et al demonstrated that an observed increase of EPC cluster numbers 7 and 90 days after a stroke also related to a good functional outcome. Experimental administration of EPCs in animals further induces an increase in the formation of new blood vessels and also of blood flow in cerebral ischemia. However, few transplanted cells are actually found in the brain, and these cells are only infrequently of endothelial phenotype.

Does this formation of new vessels result in a better stroke recovery? Other neovascularization stimulating agents (like VEGF and other growth factors) administered several days after stroke potentially improve outcome by decreasing the ischemic penumbra. Importantly, however, these agents also cause an increase in endothelial permeability resulting in brain edema. Neovascularization thus seems important in recovery, but the adverse effects of neovascularization stimulating agents cause some concern. Whether neovascularization by EPCs improves stroke outcome is not known, though EPCs could be a valuable alternative for neovascularization stimulating agents. Furthermore, the beneficial effects of EPCs in the brain are probably not limited to neovascularization. In an observational study in rats with experimental stroke, neovascularization related to neurogenesis (from neural progenitor cells present in the brain), and also to migration of these neural progenitor cells along the newly formed vessels. VEGF plays a regulating role in this process of neurogenesis and angiogenesis in the brain. After experimental progenitor cell administration in rats, VEGF levels were higher in the ischemic border zone, whereas neurogenesis and angiogenesis were reciprocally increased in this zone. Thus, administered (endothelial) progenitor cells may enhance the proliferation of endogenous neural progenitor cells in the brain. This pathway could be more important than angiogenesis itself, as the EPC-induced vessels are those of small calibre (capillaries), insufficient to restore large perfusion defects. Next to this paracrine stimulation of neurogenesis, progenitor cells can also adapt neural characteristics themselves. However, in animal experiments incorporation into neuronal circuits of these cells seemed unlikely. Independent of the possible mechanism of action, the intravenous administration of human umbilical cord blood (a rich source of various progenitor cells, among which are EPCs) led to better recovery of motor function in rats.

There are more potential benefits of EPCs for patients with cerebrovascular disease. Next to the potential effects of EPCs in acute cerebral ischemia, EPCs could be of benefit for patients with leukoaraiosis and vascular dementia. In endothelial cells that are found in white matter lesion vessels, markers of endothelial and microglial activation, and immunoreactivity to hypoxia-inducible factors are elevated. All these changes relate to a chronic hypoxic state. Also, endothelial injury and breakdown of the blood-brain barrier have been implicated in the pathogenesis of leukoaraiosis and dementia. Moreover, EPCs might reverse the hypoxic state by neovascularization and restore the endothelial injury and in these 2 ways prevent the progression of leukoaraiosis.
There is some evidence that suggests that EPCs are involved in attenuating the progression of leukoaraiosis. Patients who take ACE-inhibitors, which increase circulating EPC numbers, show less progression of white matter lesions in the PROGRESS study. Of course, this effect could also be attributable to a blood pressure lowering effect. Because EPC numbers were not measured in this study, we are uncertain what caused the effect on the progression.

Should clinical trials on EPC injection in cerebrovascular disease be started? EPCs seem safe in cardiac studies, but it is uncertain what caused the effect on the progression. Because studies with EPCs showed a positive effect on clinical outcomes, this could be attributable to a blood pressure lowering effect. Because EPCs could also change pathophysiological and therapeutic concepts, which will hopefully improve clinical treatments in vascular neurology.

Sources of Funding
R.P.W. Rouhl is funded by a research grant of the Netherlands Heart Foundation (grant number 2005 B 022).

Disclosures
None.

References

Endothelial Progenitor Cell Research in Stroke: A Potential Shift in Pathophysiological and Therapeutical Concepts
Rob P.W. Rouhl, Robert J. van Oostenbrugge, Jan Damoiseaux, Jan-Willem Cohen Tervaert and Jan Lodder

Stroke. 2008;39:2158-2165; originally published online May 1, 2008; doi: 10.1161/STROKEAHA.107.507251
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/39/7/2158

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Stroke* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Stroke* is online at:
http://stroke.ahajournals.org//subscriptions/