Uric Acid and Neuroprotection

To the Editor:

Having arguably originated both sides and after long-equivocation over whether urate is physiologically primarily pro- or antioxidant, we finally declared in favor of a neuroprotective role in acute ischemic stroke.1 But, as Dawson et al2 note, this leaves unanswered the role of xanthine oxidase and the putative pro-oxidant role of urate in atherosclerosis, metabolic syndrome, and so forth.3–6 Perhaps treatment will ultimately involve both allopurinol and urate.

Besides the work of Chamorro and others, our support for an acute neuroprotective role is based on new evidence for specific regulation of urate levels, combined with a wider tissue-protective role. This includes activation of redox-sensitive glutamate transport elements such as glial EAAT-1 (review, ref 3), tying urate mechanistically to amelioration of excitotoxicity. This may partially explain the mismatch between animal and human trials with neuroprotectants. Essentially absent in animal models, arguably responsible for 60% to 70% of human plasma antioxidant activity, and with no treatment time lag, uric acid likely leaves much less therapeutic room for similar extracellular reducing antioxidants or (say) antiexcitotoxic agents in humans. Thus, the effectiveness of such agents in animals led to therapeutic dead ends.

A more-directed approach to neuroprotection blocks the pro-oxidant effects of uric acid2–6 and/or xanthine oxidase,2 while augmenting urates’ tissue-protective properties, eg, with superoxide dismutases (SODs).6 Similar examples include agents acting mitochondrially and/or across the blood-brain barrier. This first drew us to the spin-traps phenylbutylnitrone (PBN— the parent of both group’s PBN work in proposing that the positive results in SAINT-I were due to production of such products from NXY-059, a matter we shall shortly revisit.

P.B.H. has certain patent claims to nitro oxide–releasing spin-trap tert-nitrosobutane, aka MNP. This was taken up by Ames and his coworkers,9 especially with NXY-059, a matter we shall shortly revisit. Thus, the effectiveness of such agents in animals led to therapeutic dead ends.

A more-directed approach to neuroprotection blocks the pro-oxidant effects of uric acid2–6 and/or xanthine oxidase,2 while augmenting urates’ tissue-protective properties, eg, with superoxide dismutases (SODs).6 Similar examples include agents acting mitochondrially and/or across the blood-brain barrier. This first drew us to the spin-traps phenylbutylnitrone (PBN—the parent drug for the putative neuroprotectant NXY-059) and 2-methyl-2-nitroso propane (MNP), as well as the SOD-mimetic spin-labels TEMPO and TEMPOL. As we note1 SOD itself is neuroprotectant, as are TEMPO/TEMPOL. These agents have proven very nontoxic in human and animal trials. As “orgotein” or “ontosin,” SOD itself gained regulatory approval in Europe for radiation cystitis and Peyronies disease. Likewise, TEMPO is currently in clinical trials for radiation alopecia and parotiditis and for hypertension. A TEMPOL ester is also in trials for age-related macular degeneration.

Similarly, Cutler and coworkers relate primate longevity to uric acid levels7 and separately demonstrate8 that the action of PBN might be related to its hydrolysis products, especially the nitric oxide–releasing spin-trap tert-nitrosobutane, aka MNP. This may partially explain the mismatch between animal and human trials with neuroprotectants. Essentially absent in animal models, arguably responsible for 60% to 70% of human plasma antioxidant activity, and with no treatment time lag, uric acid likely leaves much less therapeutic room for similar extracellular reducing antioxidants or (say) antiexcitotoxic agents in humans. Thus, the effectiveness of such agents in animals led to therapeutic dead ends.

A more-directed approach to neuroprotection blocks the pro-oxidant effects of uric acid2–6 and/or xanthine oxidase,2 while augmenting urates’ tissue-protective properties, eg, with superoxide dismutases (SODs).6 Similar examples include agents acting mitochondrially and/or across the blood-brain barrier. This first drew us to the spin-traps phenylbutylnitrone (PBN—the parent drug for the putative neuroprotectant NXY-059) and 2-methyl-2-nitroso propane (MNP), as well as the SOD-mimetic spin-labels TEMPO and TEMPOL. As we note1 SOD itself is neuroprotectant, as are TEMPO/TEMPOL. These agents have proven very nontoxic in human and animal trials. As “orgotein” or “ontosin,” SOD itself gained regulatory approval in Europe for radiation cystitis and Peyronies disease. Likewise, TEMPO is currently in clinical trials for radiation alopecia and parotiditis and for hypertension. A TEMPOL ester is also in trials for age-related macular degeneration.

Similarly, Cutler and coworkers relate primate longevity to uric acid levels7 and separately demonstrate8 that the action of PBN might be related to its hydrolysis products, especially the nitric oxide–releasing spin-trap tert-nitrosobutane, aka MNP. This was taken up by Ames and his coworkers,9 especially with MNP’s reduced form, NtBHA. Previously, their rediscovery (a decade after our similar work10) of both the antioxidant properties of urate and its putative role as an evolutionary substitute for ascorbate made this scientifically respectable. In turn, we cite11 both group’s PBN work in proposing that the positive results in SAINT-I were due to production of such products from NXY-059, a matter we shall shortly revisit.

Disclosures

P.B.H. has certain patent claims to nitro oxide–releasing spin-traps and spin-labels.

Peter H. Proctor, PhD, MD
Drugscom, Inc
Houston, Tex

Uric Acid and Neuroprotection
Peter H. Proctor

Stroke. 2008;39:e126; originally published online June 19, 2008;
doi: 10.1161/STROKEAHA.108.524462
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/39/8/e126

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published
in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office.
Once the online version of the published article for which permission is being requested is located, click
Request Permissions in the middle column of the Web page under Services. Further information about this
process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/