Incomplete Modeling of the Thromboembolectomy Technique

To the Editor:

Dr Brekenfeld and his team are to be congratulated on their excellent study comparing the efficacy of thromboembolectomy devices.1 This is an important scientific comparison to make and to continue making as other devices appear on the market.

The use of the internal carotid (or ascending pharyngeal) artery and lingual artery in pigs for clot retrieval testing initially seems to be a good choice due to the anatomic similarities with the basilar and middle cerebral arteries in humans. However, some concerns must be addressed. First, these are easy angiographic targets in pigs, much easier than in the human targets that they are to simulate. The angiography presented in the article is limited, and the exact site of thrombus placement in the vessels cannot be determined without better illustrations. It is especially important in the long and tortuous lingual artery. Could the authors provide this?

Second, these vessels are different in structure and some endothelial functions compared with intracranial vessels. Important mechanical properties of the vessels are related to the histology and physiology of the artery. The absolute amount of collagen and elastin fibers, the ratio of elastin to collagen fibers, and the amount of smooth muscle in the media play an important role in vessel elasticity and flow through the artery. Differences from humans have been shown in several animals including the rat, rabbit, and dog carotid arteries which demonstrate quite different elastic moduli.2 Increases in wall thickness from human atherosclerotic disease and hypertension cause further changes in these biomechanical properties as well.

Differences have been demonstrated in endothelial functions, neurochemical receptors, and the tunica media myocyte properties (resting membrane potential) between intracranial arteries and visceral arteries in other animal models and probably apply in pigs as well. For example, cats and guinea pigs demonstrate close (resting membrane potential) between intracranial arteries neurochemical receptors, and the tunica media myocyte proper-

These biomechanical properties as well.

Differences between species and location are repeatedly seen elsewhere. Therefore, it is to be expected that these pig vessels will respond differently from fragile human intracranial vessels with regard to irritability, perforation, and spasm.

The authors properly mentioned as a limitation the vasospasm differences and structural differences between pigs and humans. These very important points may explain the lack of perforations and dissections in this pig study and greatly weakens the comparison with humans as far as spasm and other complications are concerned.

Comparison of mechanical success with these devices remains quite important and appears reasonably sound as presented but could be performed in many vascular sites. Indeed, any arteries such as visceral, renal, or extremity arteries in the pig might perform equally. Because intracranial vessels in the pig are not accessible, the search for a complete animal model should continue and other large animal possibilities should still be considered.

Disclosures

None.

Muhammad Yousaf, MD
Mary Elizabeth Atherton, MD
William C. Culp, MD

Department of Radiology
University of Arkansas for Medical Sciences
Little Rock, Ark

3. Fujiwara S, Itoh T, Suzuki H. Membrane properties and excitatory neuro-

(Stroke. 2008;39:e127.)
© 2008 American Heart Association, Inc.

Stroke is available at http://stroke.ahajournals.org

DOI: 10.1161/STROKEAHA.107.524256

e127
Incomplete Modeling of the Thromboembolectomy Technique
Muhammad Yousaf, Mary Elizabeth Atherton and William C. Culp

Stroke. 2008;39:e127; originally published online June 26, 2008;
doi: 10.1161/STROKEAHA.107.524256

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/39/8/e127

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/