Ordinal Reanalysis of the SHEP Trial

To the Editor:

The article by Patel and colleagues relating to long-term follow-up of patients in the SHEP study highlights a common problem in vascular prevention trials, namely that the sample size needed to detect an effect on ‘all’ stroke (or the composite of stroke, myocardial infarction, and vascular death) is insufficient to assess effects on fatal events alone. In the case of SHEP, chlorthalidone-based antihypertensive therapy significantly reduced all stroke (269 events) but not fatal stroke (only 24 events), relative risk = 0.91, P = 0.51. Conventional solutions to this problem of low statistical power include extending follow-up (as Patel and colleagues do) or looking for effects on fatal events across related trials, eg, using meta-analysis as done with aspirin. Demonstrating reductions in both stroke and fatal stroke supports the claim that the intervention reduces both stroke and its severity. We have proposed an alternative solution which achieves this aim in one analysis, namely that binary stroke and its severity. We have proposed an alternative solution which achieves this aim in one analysis, namely that binary

The following analyses may be performed using data from Table 1 of Patel’s article (outcome for active then control patients with analysis using ordinal logistic regression):

Stroke (2-level/binary)—106 (stroke)/2259 (no event) versus 163/2208, odds ratio 0.64 (95% CI 0.49 to 0.82), z = 3.53.

Stroke (3-level)—10 (fatal stroke)/96 (nonfatal stroke)/2259 (no event) versus 14/149/2208, odds ratio 0.64 (95% CI 0.49 to 0.82), z = 3.53.

Stroke/TIA (4-level)—10 (fatal stroke)/96 (nonfatal stroke)/62 (TIA)/2197 (no event) versus 14/149/82/2126, odds ratio 0.66 (95% CI 0.54 to 0.81), z = 3.94.

These data show that chlorthalidone-based antihypertensive therapy reduces both stroke and its severity, ie, the interventions ‘shift’ patients from fatal stroke to nonfatal stroke, nonfatal stroke to TIA, and TIA to no event (Figure). The use of ordinal statistical approaches has the added benefit that trials may be smaller for a given power, and mimics the approach increasingly being taken in acute stroke.

Disclosures

None.

Philip M.W. Bath, FRCP, MD
Chamila M. Geeganage, MSc
Laura J. Gray, MSc
Stroke Trials Unit
University of Nottingham
Division of Stroke Medicine
Nottingham, UK


(Stroke. 2008;39:e145.)
© 2008 American Heart Association, Inc.
Stroke is available at http://stroke.ahajournals.org DOI: 10.1161/STROKEAHA.108.527044
Ordinal Reanalysis of the SHEP Trial
Philip M.W. Bath, Chamila M. Geeganage and Laura J. Gray

Stroke. 2008;39:e145; originally published online July 17, 2008;
doi: 10.1161/STROKEAHA.108.527044
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/39/9/e145

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/