Can the ABCD² Risk Score Predict Positive Diagnostic Testing for Emergency Department Patients Admitted for Transient Ischemic Attack?

Jon W. Schrock, MD; Aaron Victor, BS; Theodore Losey, MD

Background and Purpose—We sought to determine if the ABCD² score, typically used for risk stratification, could predict having a positive diagnostic test in patients evaluated acutely for transient ischemic attack.

Methods—We performed a retrospective cohort study for patients admitted from our emergency department with a new diagnosis of transient ischemic attack confirmed by a neurologist. ABCD² scores were calculated and patients with a score of ≥4 were placed in the high-risk cohort. Tests evaluated included electrocardiogram, CT, MRI, MR angiography, carotid ultrasonography, and echocardiography. Specific test findings considered to signify positive diagnostic tests were created a priori.

Results—We identified 256 patients with transient ischemic attack for inclusion; 167 (61%) were female, the median age was 60 years (interquartile range, 50 to 72), and 162 (63%) patients had an ABCD² score of ≥4. Rates of completion of diagnostic testing were electrocardiogram, 270 (100%); CT, 224 (88%); MRI, 89 (35%); MR angiography, 68 (27%); carotid ultrasonography, 125 (49%); and echocardiography, 135 (53%). Univariate analysis found a significant association only with elevated ABCD² score and carotid duplex testing (P<0.05).

Conclusion—An elevated ABCD² score may help predict patients with severe carotid occlusive disease but does not predict positive outcome in other commonly ordered tests for patients being evaluated for transient ischemic attack. An elevated ABCD² score cannot be recommended as a tool to guide diagnostic testing in patients presenting acutely with transient ischemic attack. (Stroke. 2009;40:3202-3205.)

Key Words: ABCD² score ● carotid stenosis ● stroke ● transient ischemic attack
with an ED diagnosis of TIA were screened. Patients who had a subsequent neurologist diagnosis of TIA were included for analysis. Patients who had an ED diagnosis of TIA and returned to baseline while in the ED but later in the hospitalization either developed a new focal neurological deficit or were diagnosed with cerebral infarction based on radiological imaging were included for analysis. Patients subsequently diagnosed with cerebral infarction were included because this diagnosis may be made on the basis of diagnostic testing.8 For example, patients with an initial diagnosis of TIA but with a positive diffusion-weighted imaging MRI or subacute infarct on CT may receive a discharge diagnosis of cerebral infarction. Patients presenting with new focal neurological deficits in the ED which were still present at the time of neurology evaluation were felt to be an acute cerebral infarction and not a TIA. These patients were excluded from final analysis. These patients were considered a misdiagnosis during the ED evaluation.

If the diagnosis of TIA was uncertain, the staff neurologist who evaluated that patient was queried for clarification. Patients who left the hospital against medical advice or were transferred to another hospital facility were excluded. Patients were enrolled only for their initial TIA during the study period. Subsequent TIAs during the study period were excluded. Data were collected by 2 trained researchers (A.V., S.L.) using a structured instrument. Data evaluated included demographic information, medical history, presenting symptoms, location of admission (hospital or observation unit), vital signs, and results of diagnostic testing. Because we were evaluating only emergent or urgent testing for TIA, any testing performed after hospital discharge was not used in our analysis.

Lists of criteria were created a priori to represent a positive diagnostic test and are included in Table 1. All right to left cardiac shunts, including patent foramen ovale, atrial septal defect, and ventricular septal defects, were included. Any intracranial cerebral vascular stenosis was included as a positive examination if present. Our neuroradiologists do not quantify degrees of stenosis; therefore, we choose to include all patients with visible stenosis. Dilated cardiomyopathy defined as an ejection fraction ≤35% were included as a positive finding on echocardiography.

The ABCD² score is a cumulative point scoring system with the following items: age ≥60 years = 1, elevated blood pressure (systolic >140 mm Hg or diastolic >90 mm Hg) = 1, clinical features (unilateral weakness = 2 speech disturbance without weakness = 1), duration of symptoms in minutes (<10 minutes = 0, 10 to 59 minutes = 1, and ≤60 minutes = 2), and the presence of diabetes = 1.

All data were entered into a structured database using Panorama 4.0, (Provue Development, Huntington Beach, Calif). Statistical analysis was performed using STATA 9.2 (College Station, Texas). Results are reported as frequencies and percentages with interquartile ranges and 95% CIs where appropriate. Patients were dichotomized into low risk (score 0 to 3) and high risk (score 4 to 7) a priori with the high-risk cohort used as the referent group. A score of ≥4 representing high risk of subsequent TIA was conceived before study inception and has been used in prior studies.7 Univariate analysis was performed providing ORs using the χ² test with probability values <0.05 considered significant.

Results

During the study period, 436 patients received an ED diagnosis of TIA. Of those, 146 (33%) were given an alternative diagnosis not related to TIA or cerebral vascular disease. Of the ED patients diagnosed with TIA, 58 (13%) were given a neurology diagnosis of acute cerebral infarction. Of the patients diagnosed with a neurology diagnosis of cerebral infarction, 24 (9%) had no new neurological deficit at the time of admission and developed a cerebral infarction at some point during hospitalization. This allowed 256 patients for analysis. The length of stay for the patients diagnosed with TIA and cerebral infarction was 1 day (interquartile range, 1 to 3 days) and 2.5 days (interquartile range, 1 to 5 days), respectively. Of the patients diagnosed with cerebral infarction, 5 (21%) were admitted for ≥7 days. Patient demographic information can be seen in Table 2. The majority of patients, 165 (64%), were admitted to the hospital; 82 (32%) were admitted to our ED observation unit and 9 (4%) were discharged directly from the ED. The distributions of ABCD² scores can be seen in the Figure. The low-risk group included 100 (39%) patients. Univariate logistic regression found a significant association with elevated ABCD² score and carotid duplex testing only (P<0.05). The results of the regression for all the diagnostic tests studied can be seen in Table 3. At ED arrival, 14 (5.5%) of patients were currently taking anticoagulation. At discharge, an additional 3 (1.1%) patients were placed on anticoagulation. On discharge, 222 (87%) and 160 (63%) patients were given prescriptions for antiplatelet and lipid-lowering agents, respectively.

Discussion

TIA is estimated to be diagnosed at a rate of 240 000 cases each year.9 The use of diagnostic testing for patients with TIA
often follows the potential clinical stroke subtype they presented with: large vessel occlusive, small vessel occlusive, or embolic. Over 250 unique guideline documents have been published on the management of patients with TIA and 36% of these were judged by experts to be incorrect, impractical, unclear, outdated, or biased. These patients often are managed by nonneurologists who may be unaware of the need for specific diagnostic testing.

We sought to determine if the ABCD² score could assist in guiding diagnostic testing in these patients with the premise that a higher score could predict a positive test result. Unlike previously published research, we found a statistical association with an elevated score and the presence of carotid stenosis. This should not be too surprising because many of the elements of the score—hypertension, diabetes, and age—are independent risk factors for carotid stenosis. Positive results for other diagnostic testing were not influenced by an elevated ABCD² score. Although we did not specifically look at stroke subtypes, previous work has shown that an elevated ABCD² score was not associated with a particular stroke subtype.

The rates of positive diagnostic testing varied significantly with a positive electrocardiogram occurring in <2% and a positive MRI finding occurring in over half of the patients tested. It should be expected that inexpensive noninvasive tests such as an electrocardiogram would be used more frequently than more costly invasive testing and therefore have a lower percentage of positive findings. A recent publication by Quinn et al evaluated if a low ABCD² score was significantly associated with vascular lesions on carotid vascular disease. Unlike our results, they found a high score was significantly associated with carotid vascular disease. Unlike our results, they found a high score was significantly associated with vascular lesions on brain imaging. The different rates of brain imaging among populations, 46.4% and 87.5% for the Quinn study and ours, respectively, suggest that they were more selective on who received brain imaging. The differences in study objectives, in rate of testing, and the different cutoffs used to determine low versus high risk make comparisons of the results of the 2 studies problematic.

It would be helpful to have an instrument that could direct diagnostic testing of patients with TIA. Currently, such a tool does not exist. Physicians will need to continue to use their judgment in directing diagnostic testing for these patients.

Our study was conducted at a single center so our findings may be different than other centers with significantly different populations. Not every patient received every test. This would not be practical and is not possible with the retrospective nature of the study. Our rates of testing were much higher than a published Canadian study on patients with TIA. Despite our higher rates of testing, it is possible that limited diagnostic testing could introduce selection bias. We did not study how this diagnostic testing affected patient outcomes, which would require a prospective analysis. We did not use imaging criteria as part of the diagnostic criteria for TIA because it would confound the results. We did not evaluate outpatient workups for TIA. This would be difficult because very few patients with the acute presentation of TIA were discharged (4%).

Summary

We found a high ABCD² score, of ≥4, was associated with a significantly increased likelihood of carotid stenosis in patients presenting with TIA. If the score was used as a means of determining which patient gets testing, 15% of patients with significant carotid stenosis would have been missed. Although a high ABCD² score is suggestive of significant carotid disease, we cannot recommend it as a screening tool for deciding in which patients to obtain carotid imaging. A high score was not associated with positive diagnostic testing for patients undergoing brain MRI, MR angiography, CT, echocardiography, or electrocardiography and the ABCD² score should not be used to influence diagnostic testing for these modalities.

Sources of Funding

This study was funded by the Department of Emergency Medicine, MetroHealth Medical Center. The work of investigator A.V. was provided by a grant from the Edward M. Chester, MD, Summer Scholars Program at MetroHealth Medical Center.

Disclosures

None.
References

Can the ABCD² Risk Score Predict Positive Diagnostic Testing for Emergency Department Patients Admitted for Transient Ischemic Attack?

Jon W. Schrock, Aaron Victor and Theodore Losey

Stroke. 2009;40:3202-3205; originally published online July 23, 2009;
doi: 10.1161/STROKEAHA.109.560045

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2009 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/40/10/3202

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/