Biology of Vascular Malformations of the Brain

Gabrielle G. Leblanc, PhD; Eugene Golanov, MD, PhD; Issam A. Awad, MD; William L. Young, MD; Biology of Vascular Malformations of the Brain NINDS Workshop Collaborators*

Background and Purpose—This review discusses recent research on the genetic, molecular, cellular, and developmental mechanisms underlying the etiology of vascular malformations of the brain (VMBs), including cerebral cavernous malformation, sporadic brain arteriovenous malformation, and the arteriovenous malformations of hereditary hemorrhagic telangiectasia.

Summary of Review—The identification of gene mutations and genetic risk factors associated with cerebral cavernous malformation, hereditary hemorrhagic telangiectasia, and sporadic arteriovenous malformation has enabled the development of animal models for these diseases and provided new insights into their etiology. All of the genes associated with VMBs to date have known or plausible roles in angiogenesis and vascular remodeling. Recent work suggests that the angiogenic process most severely disrupted by VMB gene mutation is that of vascular stabilization, the process whereby vascular endothelial cells form capillary tubes, strengthen their intercellular junctions, and recruit smooth muscle cells to the vessel wall. In addition, there is now good evidence that in some cases, cerebral cavernous malformation lesion formation involves a genetic 2-hit mechanism in which a germline mutation in one copy of a cerebral cavernous malformation gene is followed by a somatic mutation in the other copy. There is also increasing evidence that environmental second hits can produce lesions when there is a mutation to a single allele of a VMB gene.

Conclusions—Recent findings begin to explain how mutations in VMB genes render vessels vulnerable to rupture when challenged with other inauspicious genetic or environmental factors and have suggested candidate therapeutics. Understanding of the cellular mechanisms of VMB formation and progression in humans has lagged behind that in animal models. New knowledge of lesion biology will spur new translational work. Several well-established clinical and genetic database efforts are already in place, and further progress will be facilitated by collaborative expansion and standardization of these. (Stroke. 2009;40:e694-e702.)

Key Words: angiogenesis ■ arteriovenous malformation ■ cerebral hemorrhage ■ genetics ■ physiologic ■ vascular malformations

Vascular malformations of the brain (VMBs) are relatively common lesions that cause serious neurological disability or death in a significant proportion of individuals bearing them. The most common VMBs are arteriovenous malformations (AVMs) and cerebral cavernous malformations (CCMs) with detection rates of approximately 1.1 and 0.6 per 100,000 adults per year, respectively.1 These lesions can occur either sporadically or in the context of genetic syndromes (the primary one associated with cerebral AVM is hereditary hemorrhagic telangiectasia [HHT]). Neurological symptoms associated with VMBs include hemorrhagic stroke due to lesion rupture, epilepsy, and focal neurological defects.

The last few years have seen considerable progress in unraveling the etiology of VMBs. The identification of gene mutations and genetic risk factors associated with CCM, HHT, and sporadic AVM has enabled the development of animal models for these diseases. Research also gained momentum from new findings on mechanisms of developmental angiogenesis and interactions among cells of the neurovascular unit. This review focuses on the biology of CCM and AVM pathogenesis, but there are conceptually similar issues that apply to related brain vascular anomalies, including leptomeningeal angiomas of Sturge-Weber syndrome, dural arteriovenous fistula, capillary malformations, and the mixed types that are sometimes encountered. Discovery and dissemination of new knowledge concerning basic lesion biology can spur new translational research, leading to novel biomarkers for risk stratification and prognostication and novel treatments. Importantly, understanding these
pathological states may also provide fresh insights into the basic biology of the cerebral vasculature.

Cellular and Molecular Interactions Controlling Angiogenesis

The development of the vasculature occurs in 2 stages: vasculogenesis (de novo blood vessel formation during embryogenesis) and angiogenesis (the growth of new blood vessels from pre-existing ones). Vasculogenesis of the cerebral vasculature occurs outside the brain with the formation of the perineural plexus. Capillaries sprout from this plexus and penetrate the neural tube in a characteristic spatiotemporal pattern.2 Subsequent growth of the cerebral vasculature occurs entirely by angiogenesis, the first phase of which involves vascular endothelial cell proliferation and migration. A key mediator of these processes is vascular endothelial growth factor (VEGF), which is produced by developing neuroectodermal cells and their neural and glial progeny. In response to hypoxia, VEGF also upregulates capillary permeability, and developing capillaries are characterized by relatively high permeability and low levels of interendothelial junctional proteins.4,5

The next phase of angiogenesis is vascular stabilization, during which endothelial cells form capillary tubes, strengthen their intercellular junctions, and recruit smooth muscle cells to their walls. Vascular stabilization involves reciprocal interactions between endothelial cells and pericytes, the precursors of vascular smooth muscle cells. Brain pericytes arise from mesoderm and neural crest6 and accompany capillary sprouts as they penetrate the brain.7 Pericycle differentiation and production of extracellular matrix are thought to be triggered by endothelial platelet-derived growth factor-B and transforming growth factor-β1 (TGF-β1).8–10 As pericytes differentiate, they act back on the vascular endothelium to suppress capillary sprouting, stimulate wall growth, and promote intercellular junction formation and cell-matrix adhesion.10 These actions are mediated in part through angiopeptin-1; other mediators include tissue inhibitors of metalloproteinases11 and ephrin-B2.12 Loss of pericytes (in platelet-derived growth factor-B-deficient mice, for example) leads to vessel dilation, endothelial cell hyperplasia, and macroaneurysm.9

Brain angiogenesis subsides after birth but can be reactivated in response to physiological stimuli including exercise,13 sensory enrichment,14 chronic hypoxia,15 shear stress,16 and certain hormones.17,18 Dramatic, local upregulation of angiogenesis also occurs in response to pathological conditions such as tumor, stroke, or trauma.3,19 Adult angiogenesis is regulated by some of the same factors (eg, VEGF and angiopoietins) that regulate developmental angiogenesis but is also likely to involve unique mechanisms. Capillary sprouting in adulthood requires reactivation of quiescent endothelium and breakdown of previously stabilized vessel walls and often occurs in the context of inflammation. For example, recent work indicates that endothelial sprouting is induced by different Notch pathway genes during development and inflammation.20

Figure 1. Schematic illustrations of (A) CCM and (B) AVM angioarchitecture.

Angiogenesis and VMB Formation

Cellular Pathology and Natural History of VMBs

VMBs form at the interface between arterial and venous endothelium, where capillary endothelium normally lies. A CCM is a cluster of dilated, capillary caverns that are low-flow and may contain thrombi (Figure 1A). An AVM is a mass of arteries and veins that appear to fuse without intervening capillaries and form a network of direct, high-flow arteriovenous shunts (Figure 1B). The generally accepted histopathologic conception of an AVM is that the nidus lacks a true capillary bed.21 However, the existence of dilated perinidal capillaries has long been appreciated, and recent studies suggest that these form a complex system that communicates directly with the nidus.22

A common assumption has been that VMBs arise during embryonic development, but there is little direct evidence to support this idea. The mean age of presentation is approximately 34 years for CCM23 and 40 years for AVM.24 In addition, there is now clear evidence that active growth and de novo formation of CCMs and AVMs can occur.25–28 At the cellular level, the first step in the formation of both lesion types may be capillary dysplasia.29,30 In CCM, observations in the mouse suggest that multiple cavernous capillaries can sprout from the initial lesion.31 In AVM, it is possible that perinidal capillaries fuse to become part of the nidus.22

VMB Genes and Angiogenesis

Most of the VMB genes and genetic risk factors discovered so far (Table) have demonstrated roles in vasculogenesis, angiogenesis, and vascular remodeling (formation or regression of vessels within a pre-existing vascular bed). An ongoing problem has been to understand which of these roles are most relevant to lesion formation. An additional conundrum arises from the focal nature of CCM and AVM lesions. Inherited CCM and AVM syndromes result from loss of function of one copy of the relevant gene in all of the cells that normally express the gene (eg, all endothelial cells in the case, for example, of CCM1), but lesions are seen only in discrete locations and not throughout the vasculature. This observation has led investigators to propose a genetic “2-hit” mechanism for VMB lesion formation, in which an inherited mutation in one copy of a VMB gene is followed by a somatic mutation in the second copy.32 Alternatively, the second “hit” could be environmental in the form of a localized physiological or pathological perturbation. These models and the
Cerebral Cavernous Malformation

Three CCM genes (CCM1, CCM2, and CCM3) have been identified to date. All 3 proteins are expressed in vascular endothelium and can bind into a single complex that associates with cytoskeletal and interendothelial junction proteins and components of certain signal transduction pathways (Table; Figure 2). The activity of the CCM protein complex may be regulated by the transmembrane receptor heart of glass, which is also expressed in vascular endothelium. The ligand for this receptor is currently unknown.

Mice and zebrafish with complete loss of Ccm1 or Ccm2 function (eg, by gene knockout) show profound disruption of vascular development with severe and progressive dilation of major vessels followed by embryonic death. Mice with loss of a single copy of Ccm2 develop vascular lesions similar to those seen in human CCM. Recent work in mouse and zebrafish CCM models suggests that lesions result from defects in endothelial cytoskeletal dynamics and cell–cell adhesion. For example, mouse endothelial cells in which Ccm2 is knocked out in vitro show reduced intercellular contacts and barrier function together with failure of the actin redistribution that normally accompanies capillary tube formation. These deficits arise in part from loss of CCM2 interactions with RhoA, a GTPase that regulates the cytoskeleton.

Ccm2+/− mice (ie, mice in which a single copy of the Ccm2 gene is disrupted) show greater dermal vascular permeability in response to VEGF treatment in vivo than wild-type mice. Vascular permeability in Ccm2+/− and wild-type mice did not differ under normal conditions, however. This observation is consistent with a 2-hit model of CCM lesion development in which endothelial cells deficient in ccm2 protein function normally unless challenged with an environmental perturbation. In addition, enhanced vascular permeability may predispose to hemorrhage, a consistent pathological feature of CCM lesions. Interestingly, the in vivo dermal hyperpermeability seen in Ccm2+/− mice was reversed by the statin simvastin (which inhibits RhoA isoprenylation and association with cell membranes), pointing to a possible CCM therapy.

All 3 CCM genes are expressed in central nervous system neurons and glia as well as in vascular endothelium. However, studies in mice and zebrafish mutants have shown that Ccm1 and Ccm2 are specifically required in endothelial cells for normal vascular development and that selective knockout of Ccm2 function in neuroglial cells does not lead to obvious cerebrovascular defects. Finally, studies in zebrafish have shown that identical cardiovascular phenotypes result from knockdown of ccm1, ccm2, or ccm3, thus providing further evidence that the 3 genes operate in a single functional pathway.

**Table. Genes Underlying Hereditary Forms of VMBs**

<table>
<thead>
<tr>
<th>Gene</th>
<th>Alternative Name(s)</th>
<th>Known or Putative Cellular Functions</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCM 1</td>
<td>KRIT 1</td>
<td>Binds β-catenin, stabilizes interendothelial junctions associated with actin stress fibers</td>
<td>88</td>
</tr>
<tr>
<td>CCM 2</td>
<td>Malcavernin; osmosensing scaffold for MEKK3 (OSM)</td>
<td>Cellular responses to osmotic stress; modulates MAP kinase and RhoA GTPase signaling</td>
<td>89, 90</td>
</tr>
<tr>
<td>CCM 3</td>
<td>Programmed cell death 10 (PDCD10)</td>
<td>Cell proliferation and transformation (cancer cell lines); modulates extracellular signal-regulated kinase (ERK)</td>
<td>91</td>
</tr>
<tr>
<td>Endoglin</td>
<td>HHT1</td>
<td>TGFβ superfamily coreceptor; modulates signaling by TGFβ Type II receptor, ALK-1 and ALK-5</td>
<td>43</td>
</tr>
<tr>
<td>ALK-1</td>
<td>Activin A receptor type II-like 1 (ACVRL-1); HHT2</td>
<td>TGFβ Type I receptor</td>
<td>92</td>
</tr>
<tr>
<td>SMAD4</td>
<td>SMAD family member 4</td>
<td>Common downstream mediator of multiple TGFβ superfamilly signaling pathways</td>
<td>92, 93</td>
</tr>
</tbody>
</table>

**Figure 2.** One possible model of genes and pathways involved in CCM signaling. CCM proteins form a molecular complex that interacts closely with cytoskeletal proteins and modulates interendothelial cell junctions. Mutations in one copy of a CCM gene may predispose to vascular permeability, which in turn may result in vascular leakage and vulnerability to form dysmorphic vessels. Somatic mutations in the same genetic pathway, immune responses, or altered capillary permeability after radiation injury all might act as “second hits” favoring CCM genesis or maintenance. β-cat, β-catenin; ICAP-1, integrin cytoplasmic domain-associated protein-1; ITGB1, integrin β1; JNK, JUN NH2-terminal kinase; MEKK3, mitogen-activated protein kinase kinase kinase 3; RAP-1, Ras-proximate-1.
Arteriovenous Malformation

HHT Types 1 and 2 result from loss-of-function mutations in one copy of the Endoglin (ENG) and Activin-like kinase receptor 1 (ACVRL1; ALK-1) genes, respectively. ALK-1 variants may also be associated with risk for sporadic AVM. Mutations in a third gene, SMAD4, were recently described in some cases of combined juvenile polyposis and HHT syndrome. ALK-1, endoglin, and SMAD4 all are components of the TGF-β superfamily signaling pathways (Table; Figure 3). Mice in which both copies of any of these genes are knocked out die as embryos. However, mice with mutations in just one copy of Eng or Alk-1 reproduce features of human HHT, including telangiectases and hemorrhage with unpredictable age of onset, severity, and location. Importantly, some of these mice spontaneously develop vascular dysplasias reminiscent of large-vessel AVMs.

How do reduced levels of ALK-1 or endoglin lead to vascular lesions? During development, both proteins are expressed most prominently in vascular endothelium. Both are downregulated in adulthood but induced during vessel repair. ALK-1 and endoglin have multiple actions on developing blood vessels, but their functions in vascular stabilization seem most central to disease etiology. ALK-1 or endoglin knockout mice establish a primary capillary plexus but fail to recruit pericytes and form a secondary plexus. Mice with mutations in just one copy of either gene establish relatively normal mature vasculature but have small-vessel malformations and loss of vascular smooth muscle. Defects in these mice resemble those in human HHT, in which dissociation of vascular smooth muscle cells is an early step, and sporadic brain AVM, in which there is reduced pericyte coverage of the perinidal capillaries.

Although ALK-1 and endoglin deficiencies manifest first histologically as defects of smooth muscle development, the disease process probably begins in the vascular endothelium. ALK-1, endoglin, and SMAD4 all are expressed in vascular endothelium, and ALK-1 and SMAD4 are specifically required there for smooth muscle recruitment. Thus, the primary defect in HHT may be an impaired endothelium-specific TGF-β signaling pathway with resulting smooth muscle defects. (Endoglin, however, is expressed not only in vascular endothelium, but also in vascular smooth muscle and monocytes and may be required there as well.)

Another potential cause of HHT lesions involves endothelial nitric oxide synthase. Endothelial cells of Eng+/− mice exhibit dysregulated endothelial nitric oxide synthase activity, leading to superoxide generation and impaired myogenic responses. Endothelial nitric oxide synthase malfunction could contribute to the small-vessel dilation seen at early stages of HHT, and superoxide may cause local endothelial damage and initiate capillary wall breakdown.

An unanswered question in AVM biology concerns the identity of the physiological ligand(s) for ALK-1 in vascular endothelial cells. This ligand was previously believed to be TGF-β1, which is expressed in developing vascular endothelium and known to regulate endothelial cell proliferation and migration. However, one study has indicated that deletion of TGF-βR2 (the ligand-binding TGF-β receptor) in endothelial cells does not affect vascular development and raised the possibility that the physiological ligand for Alk-1 is BMP9 or BMP10. Another mystery concerns the 10-fold difference in
prevalence of brain AVMs in HHT1 (ie, ENG deficiency) versus HHT2 (ALK-1), which have approximate penetrances of 10% and 1%, respectively.

VMBs and Vascular Patterning
Another angiogenic process in which VMB genes have been implicated is arteriovenous specification. The arteries of mice with reduced levels of CCM1, ALK-1, or endoglin show wall thinning and dilation, fewer smooth muscle cells, and loss of artery-specific markers such as ephrinB2, suggesting either loss of arteriovenous identity or transformation toward a more venous phenotype. Recently, overexpression of Notch-4 (a gene involved in arteriovenous specification) in vascular endothelium of developing mouse brain caused cerebral vascular dysplasias resembling AVMs. However, studies of arteriovenous specification have so far focused on vessels outside the central nervous system; virtually nothing is known about how this process works in the brain. Another unexplored area concerns the development of vascular phenotypes that are specific to the brain or brain subregions. For example, 2 genes have been identified in zebrafish (βpix and pak2a) whose mutation causes failure of vascular wall stabilization and hemorrhage only in the head region. Better understanding of genes specific to the central nervous system vasculature could help illuminate VMB etiology and explain the different frequencies of brain AVMs in HHT1 and HHT2.

Instigators and Abetters of VMB Formation and Progression
Genetic and Environmental Second Hits
The focal nature of VMBs has suggested that lesion formation may require not only a mutation in one copy of a given VMB gene within a particular group of cells, but also a “second hit” that triggers the disease process in the region of the lesion. This second hit could be genetic, in the form of a somatic mutation to the second copy of that gene, or a mutation in another gene acting in the same cellular pathway. The possibility of a genetic 2-hit mechanism in CCM is supported by discoveries of coexistence of germline (ie, inherited) and somatic mutations in lesion tissue from subsets of patients with all 3 forms of inherited CCMs. In addition, it has been observed that CCM protein is lost from some but not all cells of CCM lesions. Finally, mice with mutations in one copy of the Ccm1 gene do not normally develop lesions, but will do so if they also lack the tumor suppressor gene p53 (a genetic background known to increase the rate of somatic mutations). It is not known how prevalent somatic mutations are in CCM or if a genetic 2-hit mechanism also operates in HHT or sporadic CCM or AVM.

Environmental factors, including angiogenic factors and inflammatory cytokines, could also act as second hits. For AVMs, hemodynamic factors such as high flow rates and the resultant high endothelial shear stress might also promote lesion formation and/or progression through direct mechanical effects on vessel walls, upregulation of angiogenic factors, or triggering inflammation. Hemodynamic factors are probably less important for CCM, because the lesions do not conduct high flows. Direct evidence that environmental second hits can initiate AVM lesion formation comes from studies of mice with mutations in one copy of either the Eng and Alk-1 gene. Focal overexpression of VEGF greatly enhances the development of dysplasia in these mice, and this experimental dysplasia can be further exacerbated by regional increases in tissue perfusion.

Angiogenic Factors
VMBs exhibit activated angiogenesis, including upregulated expression of VEGF and other angiogenic factors and increased endothelial cell proliferation. Thus, it is possible that VMBs escape the normal controls downregulating angiogenesis in adulthood and that lesion growth occurs through an autocrine-positive feedback loop. Angiogenic factor production by VMBs could also have adverse consequences for other cells of the neurovascular unit. For example, abnormal growth factor secretion by VMBs could cause inappropriate stimulation of neuronal or glial proliferation; indeed, there is evidence for the latter. In addition, VEGF and other angiogenic factors increase blood–brain barrier (BBB) permeability, which could in turn predispose vascular walls to rupture.

Inflammation
VMBs are also sites of active inflammation. Robust B and plasma cell infiltration and oligoclonal IgG immune responses have been demonstrated in CCMs. Neutrophils, macrophages, and inflammatory markers are seen in AVMs. Inflammatory cytokines, including tumor necrosis factor-α and some interleukins, are potent stimulators of both angiogenesis and BBB breakdown and could contribute to lesion progression and rupture. Consistent with this idea, polymorphisms in the tumor necrosis factor-α and interleukin-1β and interleukin-6 genes are risk factors for intracerebral hemorrhage in sporadic AVM. Another link between inflammation and angiogenesis lies with endoglin, which is expressed in activated circulating monocytes. In postischemic heart, activated monocytes migrate to the infarct site, differentiate into endothelial cells, and contribute to vascular repair, but monocytes from HHT1 patients show reduced capacity to do so.

Breakdown of the BBB
BBB breakdown occurs in CCMs. Because loss of interendothelial contact and barrier function is also observed in Ccm2 mutant mice, BBB breakdown may be a primary defect in CCM. Alternatively, BBB breakdown in CCMs could be a symptom of activated angiogenesis and/or local inflammation. The BBB barrier has not been extensively studied in AVMs, but most intranidal vessels are of a caliber such that the capillary-level barrier would not be expected. Clinically, unless there is secondary injury from local mass effect or hemorrhage, imaging contrast agents do not pass into the extravascular space either in the nidus or in surrounding parenchyma.

New Insights and Mysteries Remaining
The past few years have shed considerable light on cellular mechanisms of VMB etiology. With regard to the roles of CCM and HHT disease genes in developmental angiogenesis,
it is now clear that both sets of genes are required specifically in endothelium and can act within common functional pathways. Several lines of evidence point to a critical requirement for these genes in vessel wall stabilization and smooth muscle recruitment and may eventually help explain how mutations in these genes render vessels vulnerable to rupture when challenged with other inauspicious genetic or environmental factors. Finally, there is now evidence of a genetic 2-hit mechanism operating in some CCM cases, as well as demonstration that environmental second hits can produce vascular lesions in mice bearing mutations in a single copy of a VMB gene.

Much still remains to be learned. Given that some (perhaps most) VMBs arise postnatally and into adulthood, we need to understand better how VMB genes function in adult angiogenesis and vascular repair and how their expression is affected by environmental perturbations. We also need to learn if mechanisms of lesion formation in sporadic VMB are the same as in familial forms. Other genes contributing to VMB syndromes should be identified, a quest that can be pursued not only in human populations, but also in *C. elegans*, *Drosophila*, or zebrafish.

With regard to experimental tools, more sophisticated animal models of VMB syndromes are being developed through conditional knockout, but currently available ones still have limitations; lesion frequency is low in heterozygous mutant mice and the available model systems do not precisely phenocopy either the angioarchitecture or the natural history of the human disease, especially with regard to intracranial hemorrhage. Better models might be generated by additional age- and cell type-specific knockouts, the use of different genetic backgrounds, or the identification of environmental triggers of lesion formation that can be applied easily and uniformly.

Finally, studies in humans have lagged behind those in animal models with regard to description of VMB etiology. Studies in human lesion tissue have been few and would be stimulated by the establishment of tissue repositories and standardized collection procedures. We still have no clear understanding of when lesion formation is initiated, how it typically progresses, or how progression is impacted by environmental risk factors. A critical step toward more sophisticated natural history studies and additional genetic studies will be the establishment of large cohorts of patients and databases of clinical information.

Translational Implications

Translational advances will include describing the biology underlying certain clinical behaviors, for example hemorrhagic risk. Although neither CCM nor AVM has a model that has been developed to the point of actually testing such questions, refinement of animal models that mimic disease natural history may make this possible. Studies in current animal models suggest specific therapeutic targets for slowing VMB formation and progression. For example, the reversal by simstatin of some of the vascular defects caused by loss of *Ccm2* function in mice raises the possibility of initiating clinical trials of statins for CCM. Observations that VMBs are sites of active angiogenesis and inflammation suggest the potential use of antiangiogenic or anti-inflammatory agents. Matrix metalloproteinase inhibitors, for example, have both antiangiogenic and anti-inflammatory activities, and a Phase I clinical trial of minocycline and doxycycline (broad-spectrum matrix metalloproteinase inhibitors) has just seen successful completion.84

A key goal for translational research is development of biomarkers that can identify subgroups most likely to benefit from a specific intervention and whose disease progression is likely to be sufficiently dire and predictable to justify therapeutic risks and side effects. Such efforts can be aided in several ways. First, further development of consensus statements for standardized collection and reporting of clinical information are needed, which are important tools to foster cohesive translational and clinical research.85 Second, there are a number of ongoing registry efforts for vascular malformations.24,36,87,94 The establishment of regional and international clinical research consortia can help provide critical intellectual mass and sufficient sample sizes to make progress. For example, the first National Institutes of Health-funded randomized trial for VMB management was recently initiated to answer questions regarding optimal management of patients with unruptured brain AVM (A Randomized trial of Unruptured Brain AVMs [ARUBA]; http://clinicaltrials.gov/ct/show/NCT00389181). Because VMB syndromes are rare diseases, a particularly important aspect of establishing functional clinical consortia is that they can provide the infrastructure necessary to enable swift initiation of clinical trials when potential therapeutics are identified.

Appendix

**Biology of Vascular Malformations of the Brain**

**National Institute of Neurological Diseases and Stroke Workshop Collaborators Workshop**

Co-chairs: Issam Awad, MD; and William L. Young, MD. Session Chairs: Mike Berg, MD; Michael Chopp, PhD; Nicholas W. Gale, PhD; Murat Gunel, MD; Eng H. Lo, PhD; Douglas Marchuk, PhD; Daniele Rigamonti, MD; and Elisabeth Tournier-Lasserve, MD. Speakers: Mike Berg, MD; Ingolf E. Blasig, ScD; PhD; Nancy Boudreau, PhD; Michael Chopp, PhD; Nicholas W. Gale, PhD; Mark Ginsberg, MD; Kunlin Jin, MD, PhD; Gary L. Johnson, PhD; Helen Kim, PhD; Michael T. Lawton, MD; Michelle Letarte, PhD; Dean Y. Li, MD, PhD; Eng H. Lo, PhD; Douglas Marchuk, PhD; J. P. Mohr, MD, MS; Stephen Nishimura, MD; Douglas Noonan, PhD; Judith Gault, PhD; Eugene Pavlikowska, PhD; Karl H. Plate, MD; Daniele Rigamonti, MD; Robert Shenker, PhD; and Elisabeth Tournier-Lasserve, MD. Participants: Rustam Al-Shahi Salman, PhD, MA, FRCP; Karen L. Ball; Marianne S. Clancy, MPA; Sander E. Connolly, Jr, MD; Brent Derry, PhD; Eva Faurobert, PhD; Judith Gault, PhD; Eugene Golanov, MD, PhD; Lisa Hannegan, MS, NP; Tomoki Hashimoto, MD; Richard F. Keep, PhD; Gabrielle G. Leblanc, PhD; Connie Lee, PsyD; Joseph McCarty, PhD; Leslie Morrison, MD; MingMing Ning, MD; Michael F. Nunn, PhD; S. Paul Oh, PhD; Beth K. Plahn, RN, MHA; Charlotte A. Pratt, PhD; Wande B. Pratt, MD; Maria Spatz, MD; Christian Stapf, MD; Guo-Yuan Yang, MD, PhD; and Jun Zhang, PhD, ScD.

**Acknowledgments**

This review is based in part on discussions at a workshop entitled “Biology of Vascular Malformations of the Brain” that was held by the National Institutes of Neurological Disorders and Stroke in Washington, DC, March 13 to 14, 2008. An agenda, participant list, and report of recommendations can be found at the workshop web
Disclosures
None.

References


Механизмы развития сосудистых мальформаций головного мозга

Stroke 2009;40:12:e694–e702

National Institute of Neurological Disorders and Stroke, Bethesda, Md; North Shore University Health System and the University of Chicago Pritzker School of Medicine, Evanston, Il; and the University of California–San Francisco Center for Cerebrovascular Research, San Francisco, Calif.

Предисловие и цель исследования. Обзор посвящен недавно проведенным исследованиям генетических, молекулярных и клеточных механизмов, лежащих в основе развития сосудистых мальформаций головного мозга (СМГМ), таких как церебральная кавернозная мальформация, спорадическая мозговая артериовенозная мальформация и артериовенозные мальформации при наследственной геморрагической телеангиэктазии. Краткое содержание обзора. Выявление мутаций генов и генетических факторов риска, ассоциированных с развитием церебральной кавернозной мальформации, наследственной геморрагической телеангиэктазии и спорадической артериовенозной мальформации сделало возможным создание моделей этих заболеваний на животных и позволило по-новому взглянуть на их этиологию. Все гены, ассоциированные с развитием СМГМ, играют известную или предполагаемую роль в ангиогенезе и сосудообразовании. В недавно проведенном исследовании продемонстрировано, что процесс ангиогенеза наиболее сильно нарушается в результате мутаций гена СМГМ, отвечающего за стабилизацию сосудистой стенки, процесс формирования капилляров из сосудистых эндотелиальных клеток, укрупнение межклеточных связей, а также формирование стенки сосудов из гладкомышечных клеток. К тому же, в настоящий момент имеются надежные доказательства того, что в ряде случаев формирование очага кавернозной церебральной мальформации происходит вследствие генетического двухступенчатого механизма, при котором за зародышевой мутацией в одной копии гена церебральной кавернозной мальформации следует соматическая мутация в другой копии. Также увеличивается число доказательств того, что при мутации одиночного аллеля гена СМГМ изменения внешней среды могут вторично влиять на развитие повреждений. Выводы.

Результаты последних исследований позволяют объяснить влияние мутаций в генах СМГМ на восприимчивость сосудов к повреждению под влиянием других неблагоприятных генетических факторов или факторов внешней среды, и предложить возможные варианты лечения. Понимание клеточных механизмов формирования и развития СМГМ у людей отстаёт от такового у животных. Новые знания о механизмах развития повреждения могут послужить стимулом для проведения последующих исследований. Уже предпринят ряд хорошо обоснованных попыток организации клинических и генетических баз данных, и дальнейший прогресс может быть ускорен в результате их объединения и стандартизации.

Ключевые слова: ангиогенез (angiogenesis), артериовенозная мальформация (arteriovenous malformation), кровоизлияние в мозг (cerebral hemorrhage), генетика (genetics), физиологический (physiologic), сосудистые мальформации (vascular malformations)

Сосудистые мальформации головного мозга (СМГМ) являются достаточно распространенными образованиями, привходящими к тяжелой инвалидизации и летальному исходу значительной части страдающих ими лиц. К наиболее распространенными СМГМ относятся артериовенозные мальформации (АВМ) и церебральные кавернозные мальформации (ЦКМ) с частотой встречаемости около 1,1 и 0,6 на 100 тыс. взрослого населения в год соответственно [1]. СМГМ могут обнаруживаться спорадически или в рамках генетических синдромов: первично ассоциированной с АВМ и спорадической артериовенозными фистулами твердой мозговой оболочки, капиллярные мальформации и смешанные типы мальформаций. Открытие и распространение новых данных об основных механизмах заболевания может стать стимулом к проведению прикладных исследований по выявлению новых биомаркеров для стратификации рисков и прогноза, а также появятся новые методы лечения. Понимание этих патологических состояний является очень важным и поможет по-новому взглянуть на важную биологию сосудов головного мозга.

КЛЕТОЧНЫЕ И МОЛЕКУЛЯРНЫЕ ВЗАИМОДЕЙСТВИЯ, РЕГУЛИРУЮЩИЕ АНГИОГЕНЕЗ

Развитие сосудов происходит в 2 этапа: васкулогенез (формирование сосудов de novo в эмбриогенезе) и ангиогенез (рост новых сосудов из уже существующих). Васкулогенез сосудов мозга происходит вне мозга с формированием периневрального сплетения. Капилляры прорастают из этого сплетения и проникают в нейральную трубку, согласно специфической пространственно-временной закономерности. [2]
Последующий рост сосудов головного мозга полностью осуществляется путем ангиогенеза, первая фаза которого включает пролиферацию и миграцию клеток сосудистого эндотелия. Ключевым медиатором этих процессов является сосудистый эндотелиальный фактор роста (СЭФР), продуцируемый нейротрофическими клетками и их нейроглиальными предшественниками. В ответ на гипоксию [3] СЭФР также увеличивает капиллярную проницаемость. Растущие капилляры характеризуются относительно высокой проницаемостью и низким уровнем содержания межэндотелиальных соединительных белков [4, 5].

Следующим этапом ангиогенеза является сосудистая стабилизация, во время которой эндотелиальные клетки формируют капилляры, укрепляются межклеточные связи, а из гладкомышечных клеток формируются стенки сосудов. Стабилизация сосудистой стенки включает в себя рецепторные взаимодействия между эндотелиальными клетками и перицитами, предшественниками сосудистых гладкомышечных клеток. Перитонез головного мозга зарождаются в мезодерме и нервном гребешке [6] и сопровождают капиллярные ростки во время их прорастания в мозг [7]. Эндотелиальный тромбозитарный фактор роста B и трансформирующий ростовой фактор-β1 (TGF-β1), вероятно, индуцируют дифференцировку перицитов и выработку внеклеточного матрикса [8–10]. Во время дифференцировки перициты позволяют образование на эндотелии сосудов, подавляя рост капилляров, стимулируя утолщение стенок и формирование межклеточных связей, а также клеточно-матричную адгезию [10]. Эти процессы отчасти регулируются ангиоотимом-I; к другим медиаторам относятся тканевые ингибиторы металлопротеиназ [11] и эфрин-В2 [12]. Снижение числа перицитов (например, у мышей с дефицитом тромбоцитарного фактора роста B) ведет к расширению сосудов, гиперплазии клеток эндотелия и развитию микроаневризм [9].

Ангиогенез сосудов головного мозга завершается после рождения, но может быть реактивирован в ответ на физиологические стимулы, такие как физические упражнения [13], сенсорное насыщение [14], хроническая гипоксия [15], стресс [16] и действие некоторых гормонов [17, 18]. Активный локальный механизм прорастания капилляров у взрослых людей регулируется теми же факторами (например, СЭФР и ангиоотимом-I), участвующими в ангиогенезе в ранней периодах жизни, но также имеет некоторые уникальные механизмы. Для прорастания капилляров у взрослых необходимо активация эндотелия и разрыв стабилизированных сосудистых стенок, что часто происходит в связи с воспалением. Например, в недавно проведенном исследовании продемонстрировали, что эндотелиальный рост индуцируется различными генами Notch-опосредованного сигнального пути в ходе развития и при воспалении [20].

АНГИОГЕНЕЗ И ФОРМИРОВАНИЕ СМГМ

Патологическая анатомия и естественное развитие СМГМ

Сосудистые мальформации головного мозга формируются на границе между артериальным и венозным эндотелием, там, где в норме залегает капиллярный эндотелий. ЦКМ представляет собой скопление расширенных капиллярных каверн, характеризующихся низкой скоростью кровотока и частым содержанием тромбов (рис. 1А). АВМ представляет собой конгломерат артерий и вен, формирующих сеть прямых артериовенозных шунтов с высокой скоростью кровотока, не соединенных капиллярами (рис. 1Б). Согласно общепринятой гистопатологической концепции, АВМ – это очаг, в котором отсутствует истинное капиллярное ложе [21]. Тем не менее, существование расширенных периодальных капилляров давно не вызывает сомнений, и результаты последних исследований свидетельствуют о том, что они формируют сложную систему, напрямую сообщающуюся с АВМ [22].

Наиболее распространенным является мнение о том, что СМГМ образуются в ходе эмбрионального развития, но в поддержку этой гипотезы существует очень мало прямых доказательств. Средний возраст появления симптомов СМГМ составляет около 34 лет для ЦКМ [23] и 40 лет для АВМ [24]. К тому же, не существует убедительных доказательств того, что активный рост и формирование ЦКМ и АВМ может происходить de novo [24]. На клеточном уровне первой ступенью формирования обоих видов повреждений может являться капиллярная дисплазия [29, 30]. Наблюдения за мышами с ЦКМ свидетельствуют о том, что множественные кавернозные капилляры могут прорастать из первичного очага [31]. При АВМ существует возможность срастания периодальных капилляров в единий очаг [22].

Гены СМГМ и ангиогенез

Большинство генов СМГМ и генетических факторов риска, известных в настоящее время (см. таблицу), играют роль в васкулогенезе, ангиогенезе и сосудистом ремоделировании (формировании или утрате сосудов в пределах существующего капиллярного ложа). Актуальной проблемой является понимание механизмов, наиболее значимых в формировании очага СМГМ. Дополнительные трудности связаны с локальным характером поражений при ЦКМ и АВМ. Наследственные синдромы ЦКМ и АВМ являются следствием потери функции одной копии соответствующего гена в каждом клетке, которые в норме этот ген экспрессируют (например, все эндотелиальные клетки в случае Cem1), но эти поражения носят очаговый характер, и вся сосудистая сеть при этом не страдает. Это наблюдение позволило исследователям предположить генетический двухступенчатый механизм формирования СМГМ, при котором наследственная мутация одной копии гена СМГМ влечет за собой мутационную мутацию во второй копии [32]. Второй этап формирования СМГМ может
быть связан с воздействием факторов внешней среды в виде локального физиологического или патологического влияния. Эти модели и их доказательства обсуждаются более детально в следующих разделах.

Церебральная кавернозная мальформация
На сегодняшний день выявлены три гена, отвечающих за развитие ЦКМ (Ccm1, Ccm2, Ccm3). Все три белка экспрессируются в сосудистом эндотелии [33] и могут образовывать единный комплекс, связывающийся с белками цитоскелета и межэндотелиальными соединительными белками, а также компонентами определенных каскадов реакций сигнальной трансдукции (таблица; рис. 2, см. цв. вклейку) [34]. Активность белкового комплекса ЦКМ может регулироваться трансмембранным рецептором сигнального пути Heart-of-glass, который также экспрессируется в эндотелии [35]. Лиганд этого рецептора в настоящее время неизвестен.

У мышей и рыбок-зебр с полной потерей функций генов Ccm1 и Ccm2 (например, в связи с утратой гена) наблюдали серьезные нарушения развития сосудов с выраженной и прогрессирующей дилатацией крупных сосудов и последующей гибелью эмбрионов [36, 37]. У мышей с потерей одной копии гена Ccm2 развивались поражения сосудов, сходные с поражениями сосудов при ЦКМ у людей [38]. Результаты последнего исследований с использованием модели ЦКМ на мышах и рыбах-зеbr свидетельствуют о том, что поражения развиваются в результате дефектов развития эндотелиального цитоскелета и нарушений межклеточной адгезии [36, 37]. Например, в эндотелиальных клетках мышей, в которых ген Ccm2 подавлен in vitro, наблюдали уменьшение числа межклеточных связей и нарушение барьерной функции в сочетании с нарушениями перераспределения актина, в норме сопутствующее формированию капилляров. Эти нарушения развиваются частично в результате потери взаимодействий между Ccm2 и RhoA, ГТФазой, регулирующей формирование цитоскелета.

У Ccm2+/– мышей (т. е. у мышей с повреждением одной копии гена Ccm2) наблюдали большую проница-
емость сосудов кожи в ответ на терапию СЭФР in vivo по сравнению с мышами дикого типа. Однако, в нормальных условиях проницаемость сосудов у мышей Ccm2+/- и мышей дикого типа не отличалась. Это наблюдение также было справедливо для двухступенчатой модели развития ЦКМ, в которой функция эндотелиальных клеток с дефицитом белка Csm2 при отсутствии влияния факторов внешней среды не нарушалась. К тому же, повышенная проницаемость сосудов может провоцировать развитие кровоточенния — характерного патологического симптома ЦКМ. Интересно, что in vivo у мышей Ccm2+1 повышенная проницаемость сосудов кожи снижалась на фоне введения симвастатина (подавляющего изопренизацию RhoA и его связь с клеточными мембранами), что указывает на возможный подход к лечению ЦКМ [37].

Все три гена ЦКМ экспрессируются в нейронах центральной нервной системы (ЦНС), клетках глии и эндотелиальных клетках. Тем не менее, в исследований, проведенных на мышах и рыбках-зебрах с наличием генной мутации, продемонстрировали, что Ccm1 и Ccm2 необходимы для нормального развития сосудов, но селективная утрата функции Ccm2 в клетках нейроглии не приводит к развитию очевидного цереброваскулярного дефекта [33, 38]. В исследовании на рыбах-зебрах было показано, что идентичные сердечно-сосудистые фенотипы образуются в результате выключения Ccm1, Ccm2 или Ccm3, что доказывает участие этих генов в едином функциональном каскаде реакций [36, 37, 39].

Артериовенозная мальформация

Первый и второй типы НГТ развиваются в результате мутаций, сопровождающихся потерей функции одной копии гена эндоглинина (Eng) и рецептора активин-киназы-1 (ACVRL1; ALK-1). Варианты ALK-1 могут также быть ассоциированы с риском развития спорадических АВМ [41]. Мутации в третьем гене — SMAD4 — были недавно описаны при некоторых случаях сочетания юношеского полипоза и синдрома НГТ [42]. ALK-1, эндоглин и SMAD4 экспрессируются в эндотелии, причем ALK-1 и SMAD4 необходимы для нормального развития сосудов, но не для спорадических АВМ, при которых первоначальные капилляры в меньшей степени охвачены периодиками [53]. У мышей с мутациями только одной копии любого из генов наблюдался относительно нормальный структурный сосудистый русло, но с развитием мальформаций мелких сосудов и снижением числа гладкомышечных клеток сосудистой стенки [45,46]. Дефекты у этих мышей напоминали изменения, характерные для НГТ у человека, при которой на ранних стадиях происходит диссоциация гладкомышечных клеток сосудов, [30] и для спорадических АВМ, при которой первоначальные капилляры в меньшей степени охвачены периодиками [55].

Хотя дефицит ALK-1 и эндоглинин, прежде всего, проявляется в виде дефектов развития гладких мышц, патологический процесс, вероятно, начинается в сосудистых эндотелионах. Гены ALK-1, эндоглин и SMAD4 экспрессируются в эндотелионах, причем ALK-1 и SMAD4 необходимы для нормального развития сосудов. Эндотелиальные клетки, давние эндотелиональные клетки, при которых первоначальные капилляры в меньшей степени охвачены периодиками [36, 37, 39].

Артериовенозная мальформация

Первый и второй типы НГТ развиваются в результате мутаций, сопровождающихся потерей функции одной копии гена эндоглинина (Eng) и рецептора активин-киназы-1 (ACVRL1; ALK-1). Варианты ALK-1 могут также быть ассоциированы с риском развития спорадических АВМ [41]. Мутации в третьем гене — SMAD4 — были недавно описаны при некоторых случаях сочетания юношеского полипоза и синдрома НГТ [42]. ALK-1, эндоглин и SMAD4 являются компонентами сигнальных каскадов реакций супероксид-анионов и нарушения активности NO-синтезазы, что приводит к появлению супероксид-анионов и нарушению реактивности гладкомышечных клеток [57]. Дефект эндотелиональной NO-синтезазы приводит к дилатации мелких сосудов, что наблюдается на ранних стадиях НГТ, а супероксид-анионы могут стать причиной локального повреждения эндотелиона инициировать разрушение капиллярной стенки.

Нерешенным вопросом в механизме развития АВМ остается выявление физиологических лигандов ALK-1 в клетках эндотелиона. Этим лигандом раньше считали TGF-β1, экспрессировавшийся в развивающихся эндотелионах и регулирующий пролиферацию и миграцию эндотелиональных клеток. Тем не менее, в одном из исследований показали, что делиция в гене TGF-βR2 (лиганд-связывающего TGF-β-рецептора) в эндотелиональных клетках не влияет на развитие сосудов. Это повышает вероятность того, что физиологическими лигандами ALK-1 являются BMP9 или BMP10 [48]. Другой загадкой является 10-кратное различие в преобладании АВМ при НГТ 1-го типа (например, дефицит Eng) по сравнению НГТ 2-го типа (ALK-1), имеющих вероятную пенетрантность равную 10 и 1% соответственно.
СПМГм и моделирование сосудов

Другим процессом ангиогенеза, в который вовлечены гены ЦКМ, является артериовенозная трансформация [58]. В артериях мышей с низким содержанием Ccm1, ALK-1 или эндоглина обнаружили истощение стенок и расширение просвета сосудов, снижение числа гладкомышечных клеток, а также снижение уровня артерий-специфических маркеров, таких как эфрин-B2, свидетельствующих либо о потере артериовенозной идентичности, либо о трансформации в "более венозный" фенотип. Авторы последнего исследования обратили внимание, что избыточная экспрессия Notch-4 (гена, участвующего в артериовенозной трансформации) в эндотелии сосудов мозга развивающихся мышей привела к развитию церебральных сосудистых дисплазий, напоминающих АВМ [59]. Тем не менее, исследования артериовенозной трансформации на данный момент сфокусированы на сосудах вне ЦНС; не существует никаких объяснений того, как происходит этот процесс в мозге.

Другой неисследованной областью является выделение сосудистых фенотипов, являющихся специфическими для ЦНС. Например, у рыбок-зебр выявили 2 гена (bpix и pak2а), мутация в которых приводит к нарушению стабилизации сосудистой стенки и развитию кровотечений только в области головы [60, 61]. Большой объем информации о генах, специфичных для сосудов ЦНС, мог бы помочь выяснить этиологию СМГМ и объяснить, например, различия в частоте развития АВМ мозга при НГТ 1-го и 2-го типов.

ПУСКОВЫЕ ФАКТОРЫ И ФАКТОРЫ, СПОСОБСТВУЮЩИЕ ФОРМИРОВАНИЮ И ПРОГРЕССИРОВАНИЮ СМГМ

Влияние генетических факторов и факторов внешней среды

Очаговый характер СМГМ дает основания предполагать, что формирование повреждений может происходить не только в силу мутации в одной копии гена в пределах определенной группы клеток, но также в результате действия других факторов, инициирующих патологический процесс в области будущей СМГМ. Эти факторы могут быть генетическими, в виде соматической мутации второй копии этого гена, или мутации другого гена, продукт которого участвует в той же каскаде клеточных реакций. Вероятность генетического двуступенчатого механизма развития ЦКМ подтверждается сосуществованием наследственной предрасположенности и соматических мутаций в поврежденной ткани в подгруппах пациентов со всеми тремя формами наследственных ЦКМ [62–64]. У мышей с мутацией одной копии гена в норме не развиваются поражения, но при отсутствии генасупрессора опухолового роста р53 (генетического фактора, снижающего частоту соматических мутаций) они встречаются довольно часто [65]. Неизвестно, преобладают ли соматические мутации при ЦКМ, или при НГТ и спорадических ЦКМ и АВМ также оказывает влияние генетический двуступенчатый механизм.

На развитие СМГМ также могут влиять факторы внешней среды, включая ангиогенные факторы и воспалительные цитокины. При АВМ гемодинамические факторы, такие как высокая скорость кровотока и суммарная гемодинамическая нагрузка на эндотелий, могут также провоцировать формирование повреждений и его прогрессирование вследствие прямого механического воздействия на стенки сосудов, повышенной активности ангиогенных факторов и индукции воспаления [67–69]. Гемодинамические факторы, вероятно, играют небольшую роль в развитии ЦКМ, поскольку высокая скорость кровотока не оказывает влияния на формирование повреждений. Прямые доказательства влияния внешней среды на формирование АВМ приведены в исследованиях на мышах с мутацией одной копии генов Eng или ALK-1. Локальное повышение экспрессии СЭФР в значительной степени усиливает развитие дисплазии у этих мышей, и эта экспериментальная дисплазия в дальнейшем усугубляется локальным повышением перфузии [71].

Ангиогенные факторы

При СМГМ активируется ангиогенез, в т. ч. повышается экспрессия СЭФР и других ангиогенных факторов [72, 73] и усиливается пролиферация эндотелиальных клеток [74, 75]. Также вероятно, что при СМГМ происходит нарушение нормально- го понижения активности ангиогенеза с возрастом, и рост СМГМ происходит по аутокринному механизму положительной обратной связи. Продукция ангиогенных факторов при СМГМ может оказывать неблагоприятное влияние на другие клетки нейрососудистого звена. Например, повышенная секреция фактора роста при СМГМ может стать причиной неадекватной стимуляции пролиферации нейроглиальных клеток или могут вызывать прогрессирование повреждений. Прямые доказательства влияния внешней среды на формирование СМГМ в значительной степени усиливает развитие дисплазии у этих мышей, и эта экспериментальная дисплазия в дальнейшем усугубляется локальным повышением перфузии [71].

Воспаление

СМГМ также являются очагами активного воспаления. При ЦКМ обнаружена стойкая инфильтрация B-лимфоцитами и плазматическими клетками, а также олигоклональных IgG антитела [77]. При АВМ в очаге мальформации выявлены нейтрофильы, макрофаги и воспалительные маркеры [78]. Воспалительные цитокины, включая фактор некроза опухоли-α и некоторые интерлейкины, являются стимуляторами ангиогенеза и нарушения целостности ГЭБ и могут вызывать прогрессирование повреждений стенок и разрывы сосудов. Согласно этой гипотезе, полиморфизмов генов фактора некроза опухоли-α [79], интегралькин-1β [80] и интерлейкина-6 [81] являются факторами риска развития внутренногозового кровоизлияния при спорадических АВМ.
активированные моноциты мигрируют к очагу инфаркта, проникают в эндотелии и участвуют в репарации сосудов, но у пациентов с НГТ 1-го типа \( (Eng^+/-) \) эта функция моноцитов была снижена [51].

Нарушение целостности гематоэнцефалического барьера

При ЦКМ также происходит нарушение целостности ГЭБ. [82, 83] В результате потери эндотелиальных межклеточных контактов и нарушения барьерной функции, наблюдающееся у Ccm2 мышей-мутантов [37], нарушение целостности ГЭБ может являться первичным дефектом при ЦКМ. С другой стороны, нарушение целостности ГЭБ при ЦКМ может быть признаком избыточного активного ангиогенеза и/или локального воспаления. При АВМ функции ГЭБ не были тщательно изучены, но многие интранодальные сосуды имеют строение, отличное от капилляров ГЭБ. Клинически, при отсутствии вторичного повреждения вследствие локального объемного эффекта или кровоизлияния, контрастное вещество не поступает в экстравазальное пространство ни в очаге СМГМ, ни в окружающую мальформацию вещество мозга.

НОВЫЕ ВЗГЛЯДЫ И НЕРАЗРЕШЕННЫЕ ВОПРОСЫ

За прошедшие несколько лет стали известны клеточные механизмы этиологии СМГМ. При изучении роли генов ЦКМ и НТГ в ангиогенезе выяснилось, что обе группы генов специфичны для эндотелия и участвуют в общих каскадах реакций. Есть доказательства, указывающие на важное влияние активности этих генов на стабилизацию клеточных стенок и пополнение популяции гладкомышечных клеток, помогающие объяснить, каким образом мутации и пополнение популяции гладкомышечных клеток, помогающие объяснить, каким образом мутации этих генов влияют на целостность сосудистой стенки при воздействии других генетических факторов или факторов внешней среды. В настоящее время существуют доказательства наличия генетического двухступенчатого механизма, работающего в некоторой степени, а также продемонстрировано влияние факторов внешней среды на развитие повреждений сосудов у мышей с мутациями одной копии гена, куазативного в отношении СМГМ.

Многое еще предстоит изучить. Учитывая, что некоторые (возможно, многие) СМГМ развиваются после рождения или у взрослых, нам необходимо выяснить роль генов СМГМ в ангиогенезе и восстановлении сосудов у взрослых, и изменение их экспрессии под влиянием факторов внешней среды. Необходимо также понять, существует ли различие в формировании повреждений при спорадических и семейных формах СМГМ. Также необходимо выявить другие гены, участвующие в развитии синдромов СМГМ, и эту задачу можно решить не только в человеческих популяциях, но также на C. Elegans, дрозофиллах или рыбках-зебрах.

Что касается экспериментальных методов, то более сложные модели синдромов СМГМ на животных разрабатываются с применением условного выключения генов, но в настоящее время существуют определенные ограничения: частота развития повреждений у гетерозиготных мышей-мутантов остается низкой, а в существующих модельных системах не удается точно воспроизвести фенокопии ангиоархитектоники или экстентивного развития мальформации у человека, особенно в отношении внутричерепных кровоизлияний. Более совершенные модели возможно создать с помощью дополнительного выключения генов, ответственных за старение или специфичных для определенного типа клеток, с использованием различного генетического окружения, а также выявления факторов внешней среды, инициирующих развитие мальформаций, которые можно легко и универсально использовать.

Таким образом, исследования этиологии СМГМ с участием людей отстают от исследований на моделях заболеваний у животных. Проведено лишь небольшое число исследований с участием людей, и их количество можно увеличить путем создания репозиториев тканей человека и стандартизированных методов сбора данных. Мы по-прежнему не имеем четкого представления о том, когда начнется формирование очага мальформации, каким образом мальформация развивается, как факторы внешней среды влияют на ее прогрессирование. Важнейшим шагом к проведению более сложных исследований естественного течения мальформаций головного мозга и прикладных генетических исследований будет создание больших групп пациентов и баз данных клинических сведений.

ПЕРСПЕКТИВЫ

Дальнейшие достижения будут заключаться в описании механизмов, лежащих в основе развития определенных клинических проявлений СМГМ, например, кровоизлияний. Хотя для изучения ЦКМ и АВМ не использовали модели, на которых проводили бы фактическое изучение таких вопросов, усовершенствование моделей на животных, имитирующих естественное развитие мальформаций, поможет решить эту задачу. Современные исследования на этих моделях предполагают выявление специфических терапевтических мишений для замедления формирования и прогрессирования СМГМ. Например, обнаружение у мышей под действием симбастатина эффекта обратного развития сосудистых нарушений, причиной которых является потеря функции Csm2, создало предпосылки для проведения первичных клинических испытаний статинов для лечения ЦКМ. Наблюдение, что СМГМ являются очагами активного ангиогенеза и воспаления, предполагает потенциальное использование антиангиогенных и противовоспалительных препаратов в терапии СМГМ. Например, ингибиторы матричной металлопротеиназы оказываются как антиангиогенные, так и противовоспалительный эффект, и первая фаза клинического испытания миноциклина и доксициклина (ингибиторов матричной металлопротеиназы широкого спектра действия) в настоящее время успешно завершена [84]. Ключевой целью дальнейших исследований является обнаружение биомаркеров, помогающих выде-
лить подгруппы пациентов, для которых предпочтительно будет проведение специфического вмешательства и у которых прогрессирование заболевания может быть молниеносным, что позволит обосновать терапевтические риски и нежелательные эффекты. Решения этих проблем можно достичь разными способами. Во-первых, необходимо дальнейшее усовершенствование согласованных правил для стандартизированного сбора и описания клинических данных, что будет важным условием проведения объединенных прикладных и клинических исследований в будущем [85]. Во-вторых, усилия должны быть направлены на создание реестра случаев сосудистых мальформаций [24, 86, 87, 94]. Создание консорциума региональных и международных клинических исследований может обеспечить важнейшую "интеллектуальную массу" и объем выборки для проведения исследований может обеспечить важнейшую "интеллектуальную массу" и объем выборки для проведения дальнейших исследований в этой области. Например, недавно при поддержке National Institutes of Health стартовало первое рандомизированное испытание ARUBA (A Randomized trial of Unruptured Brain AVMs; http://clinicaltrials.gov/ct/show/NCT00389181), посвященное определению оптимальной тактики лечения пациентов с неразорвавшимися АВМ головного мозга. В связи с тем, что СМГМ являются редкими заболеваниями, особенно важным аспектом создания функционального клинического консорциума является возможность обеспечить необходимую инфраструктуру для начала клинических испытаний при определении вероятной тактики лечения.

**БЛАГОДАРНОСТИ**


**ЛИТЕРАТУРА**


