Resident-Based Acute Stroke Protocol Is Expeditious and Safe

Andria L. Ford, MD; Lisa Tabor Connor, PhD; David K. Tan, MD; Jennifer A. Williams, APRN; Jin-Moo Lee, MD, PhD; Abdullah M. Nassief, MD

Background and Purpose—The decision to administer tPA to acute stroke patients is frequently made by stroke attendings or fellows, but placing residents in this position may make tPA delivery more efficient.

Methods—Beginning in 2004, we instituted a resident-based acute stroke protocol placing neurology residents in decision-making roles. Time-intervals, symptomatic hemorrhage rate, and discharge locations were prospectively collected and compared between two epochs, before and after 2004.

Results—59 acute ischemic stroke patients were treated with tPA before protocol initiation (1998 to 2002), while 113 patients were treated after protocol initiation (2004 to 2007). The average door-to-needle and onset-to-needle times were significantly shorter after initiation of the resident-based protocol (81 versus 60 minutes [$P<0.001$] and 138 versus 126 minutes [$P<0.05$]), respectively. Symptomatic hemorrhage rate (5.1% versus 3.5%) and favorable discharge location (68% versus 76%) did not differ between the two time periods.

Conclusion—A resident-driven tPA protocol, with formal training and quality control, is safe and efficient. (Stroke. 2009;40:1512-1514.)

Key Words: acute stroke • tPA • thrombolytic • stroke protocol • resident

Tissue plasminogen activator (tPA) is a proven intervention for acute ischemic stroke patients presenting within 3 hours of symptom onset. Analysis of the NINDS tPA study evaluating outcome as a function of time from symptom onset showed improved neurological outcomes with early tPA treatment. The Brain Attack Coalition recommends that stroke teams include “personnel with experience and expertise in diagnosing and treating patients who have cerebrovascular disease.” Indeed, many academic centers with neurology residencies have stroke teams including “personnel with experience and expertise in diagnosing and treating patients who have cerebrovascular disease.”

Background and Purpose

The decision to administer tPA to acute stroke patients is frequently made by stroke attendings or fellows, but placing residents in this position may make tPA delivery more efficient.

Methods

Beginning in 2004, we instituted a resident-based acute stroke protocol placing neurology residents in decision-making roles. Time-intervals, symptomatic hemorrhage rate, and discharge locations were prospectively collected and compared between two epochs, before and after 2004.

Results

59 acute ischemic stroke patients were treated with tPA before protocol initiation (1998 to 2002), while 113 patients were treated after protocol initiation (2004 to 2007). The average door-to-needle and onset-to-needle times were significantly shorter after initiation of the resident-based protocol (81 versus 60 minutes [$P<0.001$] and 138 versus 126 minutes [$P<0.05$]), respectively. Symptomatic hemorrhage rate (5.1% versus 3.5%) and favorable discharge location (68% versus 76%) did not differ between the two time periods.

Conclusion

A resident-driven tPA protocol, with formal training and quality control, is safe and efficient. (Stroke. 2009;40:1512-1514.)

Key Words: acute stroke • tPA • thrombolytic • stroke protocol • resident
Results

During the two epochs (1/98 to 6/02, before the resident-based protocol, and 2/04 to 7/07, after initiating the resident-based protocol), 59 and 113 patients were treated with tPA, respectively. Baseline patient characteristics did not differ between the two time periods (Table 1). Door-to-needle and onset-to-needle times were significantly shorter under the resident-based protocol. Moreover, 47% of patients were treated less than 2 hours from symptom onset with the resident-based protocol in place compared to 30% before that (Table 2). Beginning in 2004, several additional metrics were tracked, most of which decreased with each successive year (Table 2).

Symptomatic intracerebral hemorrhage (sICH) rate, defined as ICH within 36 hours of stroke onset accompanying any decline in neurological status, remained unchanged between the two epochs. Furthermore, the rate of hospital discharge to favorable location (home or inpatient rehabilitation) was not significantly different (Table 3).

Discussion

Direct comparison of treatment time intervals between the two time periods demonstrated greater efficiency during the resident-based stroke protocol, which had significantly shorter door-to-needle and onset-to-needle times. In addition, safety (sICH rate) and crude outcome measures were equivalent. Moreover, the door-to-needle times compare favorably to published data from other centers. The STARS multicenter tPA study of 57 academic and community centers in the United States found a median door-to-needle time of 96 minutes with a 3.3% rate of sICH. The SITS-MOST trial of 285 centers and 6483 patients in the European Union had an average door-to-needle time of 68 minutes with a 1.7% sICH rate. The shortest published door-to-needle time was 50 minutes on a cohort of 427 patients in Cologne, Germany with a 4% sICH rate. Although shorter time intervals in our resident-based protocol may be attributable to the presence of in-house physicians (residents), it should be noted that the PGY-4 residents (the final decision-makers) were highly experienced by their final year of residency. The cumulative experience of these residents is likely a critical variable ensuring safety of this resident-based team. Previous studies have reported that ED physicians deliver tPA efficiently, ensuring safety of this resident-based team. Previous studies have reported that ED physicians deliver tPA efficiently, with good agreement about tPA decisions among ED attendings, ED residents, and neurology residents, suggesting that with formalized training, tPA may be appropriately administered by physicians with diverse specialty training. In the current study, we demonstrate that neurologists-in-training (with quality control measures) can perform as well as vascular neurology specialists.

It is critical to note that several important changes were implemented concurrent with the resident-driven protocol: (1) annual training on NIHSS and NINDS tPA study and (2) monthly review by an interdepartmental committee, providing immediate feedback to residents and staff. Therefore, we emphasize that a resident-based protocol is efficient and safe, only when coupled with strict quality control measures.

There are several limitations to the current study. We report data from a single-center with small patient numbers and historical controls. Time-dependent variables unrelated to protocol changes could have affected outcomes. Discharge locations were used as crude outcome measures, whereas validated outcome scales would have provided more meaningful comparisons.

Conclusions

Resident-based protocols, with formal training and quality control measures, may enhance efficient delivery of tPA to acute ischemic stroke patients.

Table 1. Baseline Characteristics Before and After the Resident-Based Protocol

<table>
<thead>
<tr>
<th></th>
<th>1998 to 2002 (n=59)</th>
<th>2004 to 2007 (n=113)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>69</td>
<td>67</td>
<td>NS</td>
</tr>
<tr>
<td>Female, %</td>
<td>57</td>
<td>49</td>
<td>NS</td>
</tr>
<tr>
<td>Black, %</td>
<td>48</td>
<td>50</td>
<td>NS</td>
</tr>
<tr>
<td>White, %</td>
<td>52</td>
<td>50</td>
<td>NS</td>
</tr>
<tr>
<td>NIHSS</td>
<td>13</td>
<td>12</td>
<td>NS</td>
</tr>
</tbody>
</table>

Table 2. Protocol Intervals Before and After the Resident-Based Protocol (average time in minutes)

<table>
<thead>
<tr>
<th>Protocol Interval</th>
<th>1998 to 2002 (n=59)</th>
<th>2004 to 2007 (n=113)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Door-to-stroke page</td>
<td>3</td>
<td>5</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Door-to-evaluation time</td>
<td>10</td>
<td>15</td>
<td>0.05</td>
</tr>
<tr>
<td>Door-to-labs drawn time</td>
<td>18</td>
<td>23</td>
<td>0.05</td>
</tr>
<tr>
<td>Door-to-head CT completion time</td>
<td>23</td>
<td>30</td>
<td>0.05</td>
</tr>
<tr>
<td>Door-to-needle time</td>
<td>81</td>
<td>60</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Onset-to-needle time</td>
<td>138</td>
<td>126</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Onset-to-needle time &lt;2 hours</td>
<td>30%</td>
<td>47%</td>
<td>&lt;0.001</td>
</tr>
</tbody>
</table>

*From 2004 to 2007, door-to-needle times decreased with each successive year, P<0.05, 1-way ANOVA.

Table 3. Patient Outcomes: Discharge Location and Rate of sICH Before and After the Resident-Based Protocol

<table>
<thead>
<tr>
<th></th>
<th>1998 to 2002 (n=59)</th>
<th>2004 to 2007 (n=113)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>sICH</td>
<td>5.1%</td>
<td>3.5%</td>
<td>NS</td>
</tr>
<tr>
<td>Favorable discharge location*</td>
<td>68%</td>
<td>76%</td>
<td>NS</td>
</tr>
<tr>
<td>Unfavorable discharge location†</td>
<td>32%</td>
<td>24%</td>
<td>NS</td>
</tr>
</tbody>
</table>

NS indicates nonsignificant.
*Favorable discharge location = discharge to home or inpatient rehabilitation.
†Unfavorable discharge location = discharge to nursing home or death before discharge.
Acknowledgments
We acknowledge the hard work of our neurology and emergency medicine residents.

Sources of Funding
This study was supported by the NIH NINDS P50 NS055977 and the Lillian Strauss Fund for Neuroscience Research of the Barnes-Jewish Hospital Foundation, James S. McDonnell Foundation Collaborative Award.

Disclosures
None.

References
Resident-Based Acute Stroke Protocol Is Expeditious and Safe
Andria L. Ford, Lisa Tabor Connor, David K. Tan, Jennifer A. Williams, Jin-Moo Lee and Abdullah M. Nassief

Stroke. 2009;40:1512-1514; originally published online January 29, 2009;
doi: 10.1161/STROKEAHA.108.527770
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2009 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/40/4/1512

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/