Arterial Wall Enhancement Overlying Carotid Plaque on CT Angiography Correlates With Symptoms in Patients With High Grade Stenosis

Javier M. Romero, MD; Lukasz S. Babiarz, BA; N. Paola Forero, MD; Erin K. Murphy, BA; Pamela W. Schaef er, MD; R. Gilberto Gonzalez, MD, PhD; Michael H. Lev, MD

Background and Purpose—The degree of internal carotid artery (ICA) stenosis is an established primary risk factor for embolic stroke. Recent publications suggest that inflammatory features may also play an important role. Our purpose was to correlate acute neurological symptoms with either carotid artery wall enhancement or plaque calcification, on axial CT angiographic source images (CTA-SI) of patients with severe (≥70%) ICA stenosis.

Methods—75 consecutive patients with ≥70% ICA stenosis on CTA-SI were identified. Each case was classified as symptomatic (n=37) or asymptomatic (n=38), and as having either calcified or noncalcified plaque. The latter group was stratified into those with versus without arterial wall enhancement, measured in absolute and relative Hounsfield Units (HU).

Results—Calcified plaque was present in 39% (15/38) of the symptomatic patients and in 62% (23/37) of the asymptomatic patients (P=0.065). Of the 37 patients without calcified plaque, carotid wall enhancement was observed in 83% (19/23) of the symptomatic, but only in 57% (8/14) of the asymptomatic patients (P=0.041). When the “calcified plaque” and “no carotid wall enhancement” groups were pooled, versus the “carotid wall enhancement” group, enhancement was more likely in symptomatic patients (OR 3.625, CI 95% 1.3229 to 9.93, P=0.01 Fisher Exact test).

Conclusions—In patients with severe ICA stenosis, additional stratification of stroke risk may be possible based on the presence of carotid wall enhancement on CTA-SI. Patients with carotid wall enhancement are more likely to be symptomatic, compared to those with either calcified plaque or no enhancement. (Stroke. 2009;40:1894-1896.)

Key Words: cerebrovascular disease ■ CT ■ risk factors ■ carotid artery
Additionally, the “no carotid wall enhancement” and “calcified plaque” groups were pooled, and compared to the “carotid wall enhancement” group using Fisher’s Exact test.

Results

Cardiovascular risk factors such as hypertension, diabetes, hypercholesterolemia, atrial fibrillation, coronary disease, and medical treatments of the 2 groups were compared. Only diabetes was statistically more common in the asymptomatic group. The mean ICA stenosis was 82% (SD=5) for the symptomatic and 80% (SD=6) for the asymptomatic group ($P=0.1093$).

Calcified plaque was present in 15 of the symptomatic and in 23 of the asymptomatic patients ($P=0.0657$). In noncalcified plaques, carotid wall enhancement was observed in 19 of 23 symptomatic patients (82%), but in only 8 of 14 asymptomatic patients (57%; $P=0.0144$; Figure 2). Mean density of

Figure 1. A, Precontrast Axial CT of the proximal right ICA (solid arrow). B, Postcontrast Axial CTA demonstrates linear enhancement of the ICA wall (solid arrow).

Figure 2. Flow diagram. As part of the analysis, the results of groups A and B were pooled for comparison to group C.
the 27 carotid walls with visual enhancement was 79.3 HU (SD = 13), versus 38.3 HU (SD = 7.1) for the 10 carotid walls without visual enhancement (P = 0.041). Excellent interobserver agreement (Kappa: 0.9, agreement: 0.96) was achieved for visual assessment of carotid wall enhancement. When the calcified plaque and the no carotid wall enhancement groups’ data were pooled and compared to that of the carotid wall enhancement group, carotid wall enhancement was statistically more likely present in the symptomatic cohort. (P = 0.01, OR = 3.63, CI 95% 1.32 to 9.93, Fisher Exact test).

Discussion
We report that CTA enhancement of the ICA wall is significantly more common in symptomatic than in asymptomatic patients with ≥70% ICA stenosis. This is consistent with previous histological studies that have demonstrated the presence of neovascularization of the adventitial vasa vaso- rum in symptomatic ICA walls.

CTA detected carotid wall enhancement may represent vasa vasorum neovascularization, based on both its anatomic localization and rapid enhancing time course. Strong correlation between the visual determination of carotid wall enhancement and the quantitative ROI analysis was noted; visual assessment may not only be practical but is sufficient.

Our study has several limitations. We only included patients with severe (>70%) ICA stenosis. This was unavoidable with our retrospective study design, as few patients with moderate (50% to 69%) stenosis were imaged with CTA. Furthermore, a confounding factor in the interpretation of CTA-SI is that dense calcifications may obscure subtle wall enhancement.

Conclusion
In patients with severe ICA stenosis, additional stratification of stroke risk may be possible based on the presence of carotid wall enhancement on CTA. Patients with carotid artery wall enhancement are more likely to be symptomatic, versus those with either calcified plaque or no carotid artery wall enhancement.

Acknowledgments
We thank Elkan F. Halpern, PhD, Chief Statistician, Radiology Department, for data analysis, and Sussane L. Loomis, Production Coordinator, Radiology Educational Media Services, for art work.

Disclosures
None.

References
Arterial Wall Enhancement Overlying Carotid Plaque on CT Angiography Correlates With Symptoms in Patients With High Grade Stenosis

Stroke. 2009;40:1894-1896; originally published online January 29, 2009;
doi: 10.1161/STROKEAHA.108.529008

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/40/5/1894

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/