Antiplatelet Activity

Stephen M. Davis, MD, FRACP; Geoffrey A. Donnan, MD, FRACP

How has the need to measure antiplatelet activity arisen? First, we do routinely measure hematologic or physiological surrogates for other effective secondary prevention strategies. Specifically, international normalized ratio monitoring is used to determine warfarin dosage; blood pressure is the yardstick for titration of antihypertensive agents and glycemic control using HbA1c in diabetes. In these cases, clinical efficacy is usually related to these surrogates. Furthermore, a significant proportion of patients on antiplatelet therapy have clinical events, suggesting a variability of therapeutic effect. Hence, the concept of biological measurement of antiplatelet function is attractive to determine likely treatment responders.

Although the concept of measuring antiplatelet activity is appealing, there appears to be a disconnect between theory and reality. There are 2 issues of importance. These include the lack of a gold standard measure of antiplatelet functioning together with the paucity of evidence linking antiplatelet resistance and recurrent vascular events in a stroke population. A major concern with a number of these measures is poor agreement between different techniques for antiplatelet resistance and poor reproducibility over time. Indeed, these confounding factors are a major impediment in the use of these tests in prediction of future vascular events. Despite this, there is some evidence linking aspirin resistance to composite vascular outcomes of stroke, myocardial infarction, and vascular death. In addition, aspirin resistance is common, 30% prevalence in a stroke population.

So, is this avenue of research worth pursuing? We think it is. This would include better techniques with better evidence of reproducibility and correlations between the measures and stroke risk in large population cohorts. However, to address our original question, should antiplatelet activity be measured routinely, our answer at this stage is an unequivocal no.

Disclosures

None.

References


Key Words: antiplatelet RX antiplatelet secondary prevention ischemic stroke

Received September 18, 2008; accepted October 1, 2008.
From Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia.
Correspondence to Stephen M. Davis, MD, FRACP, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria Australia 3050. E-mail stephen.davis@mh.org.au

(Stroke. 2009;40:2275.)
© 2009 American Heart Association, Inc.

Stroke is available at http://stroke.ahajournals.org

DOI: 10.1161/STROKEAHA.108.537654
2275
Antiplatlet Activity
Stephen M. Davis and Geoffrey A. Donnan

Stroke. 2009;40:2275; originally published online April 30, 2009;
doi: 10.1161/STRKEAHA.108.537654
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2009 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/40/6/2275

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/