Ischemic Stroke in South Asians
A Review of the Epidemiology, Pathophysiology, and Ethnicity-Related Clinical Features

Ashan Gunarathne, MRCP; Jeetesh V. Patel, PhD; Brian Gammon, PhD; Paramjit S. Gill, FRCGP; Elizabeth A. Hughes, FRCP; Gregory Y.H. Lip, MD

Background and Purpose—Within the United Kingdom, mortality from stroke is higher among South Asians compared to European whites. The reasons for this excess cerebrovascular risk in South Asians remain unclear. The aim of this review is to present a comprehensive and systematic overview of the available literature relating to ischemic stroke among South Asian populations identifying distinct features of stroke epidemiology in this group.

Summary of Review—A high frequency of lacunar strokes is a familiar pattern among South Asians, which suggests a greater prevalence of small-vessel disease in South Asians. This may be a consequence of abnormal metabolic and glycemic processes. In addition, stroke mortality among South Asians appears to be explained by glycemic status, which is an independent predictor of long-term stroke mortality. Within India, there is a perceptible rural–urban gradient in stroke prevalence, underlying the dangers of the rapid transition in socioeconomic circumstances seen across the Indian subcontinent.

Conclusions—This review emphasizes the importance of further research into ischemic stroke for South Asians given their higher cardiovascular disease burden and necessity for targeted healthcare approaches.

Key Words: arterial stiffness ■ blood pressure ■ cardiovascular disease ■ diabetes ■ epidemiology ■ pathophysiology ■ South Asian ■ stroke

Stroke is a continuing yet preventable cause of significant morbidity and mortality in the Western world and will rapidly reach epidemic proportions in modernizing countries such as those across Asia. Of particular concern is that mortality from ischemic stroke in the United Kingdom is at least 1.5 times more common among those of South Asian origin when compared with the general population. One striking observation among the global diaspora of South Asians is that stroke is not common except for migrants living in the United Kingdom.

Why is this increased stroke mortality evident among South Asian subjects in the United Kingdom? Cultural and socioeconomic factors may account for part of this excess. Rates of cardiovascular disease (CVD) in Fiji, Singapore, and South Africa are highest among migrant Indians but are largely explained by the excess of coronary heart disease. In the United Kingdom, CVD among South Asian migrants is due to both heart disease and stroke, suggesting that an environmental basis may, in part, underlie the increased risk of stroke in this population.

An examination of those modifiable risk factors that appear particularly prevalent among ethnic minority groups (South Asians in particular) may explain how a rapid transition from subsistence living to a “Westernized lifestyle” may provide exposure needed for activation of inherent ethnic traits culminating in ischemic stroke. In addition, rates of stroke in both urban and rural India are lower than those seen in metropolitan cities. The excess of CVD mortality among South Asians in the United Kingdom is maligned with diabetes mellitus and hypertension, both of which show unique patterns of individual susceptibility and severity in this population. Although there have been two comprehensive reviews on stroke epidemiology in 1992 and 2003 highlighting both geographical and ethnic variations in stroke mortality and incidence and case fatality rates, neither of these reviews include studies on South Asians. Hence, there is a pressing need for a comprehensive review of stroke epidemiology in the South Asian population, who are known to carry an increased burden of CVD and inequitable health therein.

This review article deals with the epidemiology of ischemic stroke in people originating from the Indian subcontinent—“South Asians”—with particular attention to the increased risk that is manifest among migrants living in the United Kingdom. A secondary objective of this review is to make evident those environmental exposures that promote an

Received August 27, 2008; final revision received October 22, 2008; accepted October 24, 2008.
From the University Department of Medicine (A.G., J.V.P., B.G., E.A.H., G.Y.H.L.), City Hospital, Birmingham, UK.; and the Department of Primary Care and General Practice (P.S.G.), University of Birmingham, Birmingham, UK.
Correspondence to Gregory Y.H. Lip, MD, University Department of Medicine, City Hospital, Birmingham, B18 7QH, UK. E-mail g.y.h.lip@bham.ac.uk
© 2009 American Heart Association, Inc.

Stroke is available at http://stroke.ahajournals.org DOI: 10.1161/STROKEAHA.108.535724
increased risk of ischemic stroke among South Asians, thereby furthering understanding of the pathophysiology of this disease and allowing application of preventive strategies.

Methodology

In the preparation of this review, the term “South Asian” was used to represent people originating from the Indian subcontinent (India, Sri Lanka, Pakistan, Nepal, and Bangladesh). A MEDLINE and EMBASE search using the terms (MeSH): (South Asians) OR (Indians, Sri Lankans, Bangladeshis, Pakistanis, Nepalese) AND (Stroke) OR (Cerebrovascular Accidents) was performed. Due to the paucity of published articles in peer-reviewed journals between the period selected initially (1990 to 2005), the literature search was extended to include articles published between the years 1940 and 2005, including selected published abstracts from South Asian countries, studies with different study designs and variable stroke rates. The conclusions drawn from this review are limited by a lack of population-based longitudinal studies. Inclusion of such studies would have led to increased validity of inferences concerning the prevalence of CVD in the target population. In total, 33 articles were found based on 28 cross-sectional and 5 prospective studies describing at least one demographic, etiologic, or psychosocial aspect of stroke epidemiology. No formal statistical analysis (such as meta-analyses) was used, and data were analyzed descriptively because of the methodological heterogeneity across studies and quality limitations (as proposed by Feign et al).

Incidence of Ischemic Stroke in South Asians

The calculation of stroke incidence among South Asian populations is hampered by the lack of population-based studies. Data concerning the incidence of stroke in this population group are based on 4 studies (Table 1).

Table 1. Studies Comparing Stroke Incidence Rates Among South Asians

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Method of Diagnosis of Stroke</th>
<th>Study Methodology/Case Ascertainment</th>
<th>Sample Population</th>
<th>Investigated Main Epidemiological Aspect</th>
<th>Key Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hsu et al(^{19})</td>
<td>1996</td>
<td>WHO definition(^{19})</td>
<td>Prospective general practitioner registry-based case monitoring</td>
<td>UK, Leicester (n=129 225)</td>
<td>Comparison of stroke incidence rates between SA versus EW</td>
<td>Stroke incidence rates were similar between 2 ethnic groups; 28-day stroke mortality rates were higher in EW; actual incidence figures are not mentioned; age-specific rates showed a proportional increase with age</td>
</tr>
<tr>
<td>Bhattacharya et al(^{17})</td>
<td>1993</td>
<td>WHO definition</td>
<td>Prospective door-to-door survey</td>
<td>India, West Bengal (n=20 842)</td>
<td>Stroke incidence rates in India</td>
<td>Age-adjusted rate: 262 per 100 000; females had higher rates (274) compared with males (253); age-specific rates showed a proportional increase with age</td>
</tr>
<tr>
<td>SunderRao(^{18})</td>
<td>1971</td>
<td>Prospective</td>
<td>Unclear</td>
<td>India, Madras (n=258 576)</td>
<td>Comparison of stroke incidence rates between urban versus rural population</td>
<td>Crude incidence rate: 13 per 100 000; age-adjusted rates are not available; males had higher rates (15.2) compared with females (10.8) and urban rates (19.4) were higher than rural rates (13)</td>
</tr>
<tr>
<td>Mahajan et al(^{21})</td>
<td>2004</td>
<td>CT diagnosis</td>
<td>Prospective study based on consecutive hospital admissions</td>
<td>India, Himalaya (high altitude; n—not mentioned)</td>
<td>Stroke “incidence rates” at high altitudes</td>
<td>Males had higher rates compared with females and rates were higher than low altitudes; incidence rates are based on hospital admission rates, therefore not comparable with other studies</td>
</tr>
</tbody>
</table>

WHO indicates World Health Organization; SA, South Asian; EW, European whites.
projected to increase in 2015 to 91 per 100,000 and in 2030 to 98 per 100,000, particularly among Asian populations in developing countries. Hence, there is an urgent need to identify those factors and environmental exposures that have accelerated stroke risk among South Asians in the United Kingdom, because this will provide considerable insight for the prevention of stroke at a global level.

Prevalence of Ischemic Stroke in South Asians

The prevalence studies which are included in this review (Table 2) are mostly conducted in different areas of India (1968 to 2001). However, there are no stroke prevalence data available from other countries of the Indian subcontinent except Pakistan. Three studies have compared stroke prevalence between migrant South Asians and other ethnic groups. The crude prevalence rates of stroke among South Asians living in India vary from 52 to 842 per 100,000 for all ages (Supplemental Table I, available online at http://stroke.ahajournals.org). Age-specific prevalence rates show an exponential rise with age in all studies.

Similar to stroke studies within Western countries, with the exception of one study, all other studies concur that prevalence rates have increased 3- to 5-fold over the last 4 decades. More importantly, rates of stroke prevalence have been demonstrated to have significant heterogeneity across studies carried out in different parts of India. For example, the study carried out by Bharucha et al reported a prevalence of 542 per 100,000 compared with the 147 per 100,000 reported by Banergee et al using a similar study design during the same period. In addition, the prevalence of stroke in urban India appears to be higher than that seen in rural areas such as Haryana where the prevalence rate was only 92 per 100,000.

In Pakistan, Jafar et al reported comparatively higher prevalence rates compared with other Asian studies. However, the targeted sampling approach used in this study may have contributed to the disproportionate prevalence rates reported in the literature.

There are 2 studies that have compared the prevalence rates of stroke in South Asians with that of other Asians and Europeans using a direct approach. The study by Venketasubrmanium et al compared the prevalence of stroke among migrant South Asians when compared with Chinese and Malays and found that crude as well as age-adjusted prevalence rates were similar among all ethnic groups. The response rate of this study was only 67% and it remains unclear whether this apparent similarity between the ethnic groups depicts epidemiological reality. A Canadian study by Anand et al demonstrated that South Asians living in Canada have a higher prevalence of stroke compared with other ethnic groups.
stratified similar findings, in which the white group had the highest stroke prevalence rate compared with South Asians and Chinese.

In a health survey of the United Kingdom, the prevalence rates of ischemic stroke in migrant South Asians were significantly lower (Indian: 1100, Pakistani: 1800, Bangladeshi: 1800, and white Europeans: 2400 per 100,000 population) than that of the general population.32 These results appear to contradict the higher coronary heart disease prevalence, which has been observed in migrant South Asian populations.33 In addition, rates reported in the Indian studies also appear to be lower than reported rates in other Asian34 as well as Western studies.35 Although the reasons for this disparity may well be multifactorial, part of the explanation rests with higher mortality rates and the consequent underestimation of prevalence rates in the South Asian population.

Stroke Mortality in South Asians
Ischemic strokes account for >10% of all deaths globally and are the third most common cause of mortality in developed countries.3 There are ethnic variations reported in stroke mortality, mainly comparing whites and African-Caribbean groups in the United Kingdom.36 The Global Burden of Disease study reported that 61,900 deaths (6.5% of all deaths) were accounted for by strokes in a rural hospital-based study was 32% in 1968, which declined to 12% in 1982.39 The Global Burden of Disease study reported that 61,900 deaths (6.5% of all deaths) were accounted for by strokes in the year 1990. These studies also highlight the increased burden of disease in South Asian populations when compared with that seen in Western populations.30

There is no significant evidence to support the assertion that stroke mortality rates in the Indian subcontinent. Short-term (30-day) stroke mortality in a rural hospital-based study was 32% in 1968, which declined to 12% in 1982.30 The Global Burden of Disease study reported that 61,900 deaths (6.5% of all deaths) were accounted for by strokes in the year 1990. These studies also highlight the increased burden of disease in South Asian populations when compared with that seen in Western populations.30

There is no significant evidence to support the assertion that stroke mortality rates in the Indian subcontinent. Short-term (30-day) stroke mortality in a rural hospital-based study was 32% in 1968, which declined to 12% in 1982.30

Table 1. Standard Mortality Ratio (SMR) of South Asians and European Whites

<table>
<thead>
<tr>
<th>Year</th>
<th>Male</th>
<th>Female</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970-72</td>
<td>100</td>
<td>200</td>
<td>300</td>
<td>400</td>
</tr>
<tr>
<td>1979-88</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>500</td>
</tr>
<tr>
<td>1989-92</td>
<td>300</td>
<td>400</td>
<td>500</td>
<td>600</td>
</tr>
</tbody>
</table>

Predictors of Stroke Severity in South Asians
Ethnicity has been reported as an independent predictor of stroke severity.41 Evidence from US-based studies reveals a direct relationship between stroke severity and other contributory factors such as in-hospital mortality, duration of stay, poor Glasgow Coma Scale score, and incontinence during acute presentation.42 Although the Leicestershire Stroke Study reported a significant association between development of incontinence during the acute stage and 28-day stroke morbidity in South Asians, there is limited information on the impact of South Asian ethnicity on stroke severity.
Type of Stroke
Population-based studies that have examined the incidence of stroke subtypes in ethnic groups have shown significant differences in type of stroke in the white population compared with that of the black population.63–68 Most South Asian stroke studies do not enumerate the stroke classification or type of infarction, perhaps due to limited imaging facilities in South Asian countries. This may also be explained by the limited number of population-based studies because available information is not sufficient to allow an accurate diagnosis to be made. Of the few available studies (Table 2), one Pakistan-based stroke study showed prevalence rates of 66% for ischemic strokes, 21% for intracerebral hemorrhage, and 8.3% for subarachnoid hemorrhage.29 One study (carried out in India) also showed a significant increase in the prevalence of hemorrhagic strokes of 32%.46 Two other studies from South Asian countries also showed similar distribution of stroke subtypes.31,47

In the absence of direct comparative studies, prevalence rates from the 3 previously mentioned studies imply a higher risk of hemorrhagic stroke in the South Asian population compared with that of the white population (21%46 versus 6.4%46). The only 2 South Asian studies that classified their stroke population according to the TOAST taxonomy found a higher prevalence of lacunar strokes (42.7% and 68%) compared with large vessel infarctions (26% and 10%).50,51 Although a higher occurrence of lacunar infarctions in the South Asian population has not been previously highlighted, the increased prevalence of diabetes and hypertension in the South Asian population probably accounts for this excess risk of developing small vessel disease.52 Further studies are therefore necessary to directly examine small vessel structure and function and its relationship to other novel risk factors (eg, metabolic and inflammatory mediators) to determine disease pathogenesis among South Asian stroke survivors and the wider South Asian population.

Cardiovascular Risk Profile
Hypertension,6 diabetes mellitus,52.53 dyslipidemia,54,55 and atrial fibrillation are the most common known risk factors in stroke etiology. The prevalence of these risk factors is known to differ among various ethnic groups56 and is also associated with manifestations of different stroke subtypes.49,57 Also, South Asian migrants have been reported to have a higher prevalence of central obesity, hyperinsulinemia,58 hypertglycemia, and low high-density lipoprotein cholesterol, but less hypercholesterolemia and general obesity relative to the general UK population.59 These cross-sectional studies highlight theethnic variations observed in stroke prevalence and their inferred association with cardiovascular risk factor profiles but should not be taken to explain disease causality.

Hypertension
Migrant South Asian populations in the United Kingdom are known to have a higher risk for hypertension.59–61 The prevalence of hypertension in the South Asian population has been reported to be in the region of 30% and is also reported to be significantly higher compared with the white population.60 Elevated blood pressure is the most significant known risk factor for stroke in terms of strength of association and consistency of findings (risk of stroke in the presence of hypertension is increased 3-fold49). Higher prevalence rates of hypertension have also been reported in 2 other comparative South Asian stroke studies in the United Arab Emirates and Singapore where rates were more than 70%.24,62

Although large studies in stroke are lacking, the disproportionately higher coronary heart disease mortality rates in South Asians in Britain have been related to hypertension.63 However, mean blood pressure levels, the use of antihypertensive therapy, and secular trends in blood pressure among South Asians appear to be comparable with white European counterparts.64 Longitudinal studies also show that hypertension is a strong risk factor for coronary heart disease in Indians living elsewhere.65 The possibility remains that migration from the Indian subcontinent to the United Kingdom, and UK residence therein, confers an adverse physiological response to the effects of high blood pressure in this group, which may explain a greater prevalence of hypertension-related morbidity in South Asians.

Recently, we reported that healthy South Asians had greater arterial stiffness compared with age, gender, and CVD risk factor matched whites.66 It appears that there is an adverse and disproportional impact of the mean arterial pressure on the vascular system in South Asians. The reasons for this adverse impact on the vascular system appear to be multifactorial and include genetic susceptibility and the simultaneous presence of other metabolic, inflammatory, and oxidative stress-related abnormalities,66 which cause a synchronized impact on the vascular system. Such cumulative stressors can reduce the effectiveness of protective mechanisms, thereby allowing pathological processes such as atherosclerosis to become operative, which in turn increases the risk of stroke and coronary heart disease.

Diabetes Mellitus
The presence of diabetes is much higher among persons with stroke and is the second most common risk factor in stroke. Glycemia is associated with poorer clinical outcomes in patients with acute ischemic stroke.67 Diabetes is a continuing global epidemic, particularly concentrated within the Indian subcontinent68,69 such that dispersed migrant populations consistently show a major propensity to develop the disease.30–32 Their diabetes prevalence that is much higher (approximately 10% to 15%) compared with the general British population (approximately 4%)60 and appears to equal rates in some parts of India.73 Among resident Indians, rates of diabetes appear to be associated with urbanization,74 reportedly lower in rural parts of India.75 However, a direct comparison of Indian migrants to rural contemporaries in villages of origin in India showed no differences in the rates of glucose intolerance.76 Moreover, despite varied lifestyle approaches, cross-sectional studies from Fiji77 and Tanzania78 also question whether urbanization has a role to explain the high prevalence of diabetes among Indian populations. Hence, not only is diabetes more common among South Asians compared with other ethnic groups,77 but it is likely that this is a hereditable risk factor in this population.78

Diabetes among South Asian patients with stroke explains poorer survival in this group78 and a greater incidence of CVD outcomes among South Asian patients with hypertension.65 Although the presence of diabetes calls for more stringent management of blood pressure, the underlying pathophysiology that accelerates the risk of stroke is not clear. Moreover, the magnitude of cerebrovascular risk from diabetes may differ between migrant and nonmigrant populations of South Asians, especially those living in the United Kingdom.

Atrial Fibrillation
The prevalence of atrial fibrillation in patients with stroke ranges from 10% to 29% in population-based studies12 (For example, OXVASC, 16%; France Dijon, 29%; Manhattan,19%; West Birmingham, 10%;38,79; South London, 21%). In a registry analysis, the West Birmingham stroke project reported a lower prevalence of atrial fibrillation in the South Asian population compared with that of whites (11.8% versus 34.6%).50,51 Compared with other risk factors, the prevalence of atrial fibrillation in South Asians has remained fairly similar over the last decade and has been shown to have minimal impact on the stroke outcomes.5 However, the reasons for this observed disparity have not been fully explained and warrant further investigation.

Dyslipidemia
Hyperlipidemia is a common risk factor that is present in >25% of patients with stroke. South Asians are known to have an atherogenic lipid profile, which includes raised triglycerides,3 low high-density lipoprotein cholesterol100 and raised lipoprotein(a) levels. In 2 South Asian stroke studies, >50% of the patients with stroke had elevated cholesterol levels.31,55 In whites, the prevalence of hyperlipidemia ranges from 28.7% (Dijon, France) to 29.5% (Oxford) and 32% (Manhattan).12 A similar trend has been reported in South Asians in the United Arab Emirates, where hyperlipidemia has become the second most modifiable risk factor after hypertension. However,
recent evidence suggests that low high-density lipoprotein levels in South Asians may be more important than higher cholesterol levels in the etiology of CVD.68 Coronary heart disease and heart failure are also important risk factors in stroke. It is well known that South Asians in the United Kingdom are more prone to premature, more extensive coronary heart disease, which also carries a poorer prognosis.10

Moreover, recent evidence suggests the role of novel risk actors in determining stroke etiology. For example, elevated lipoprotein(a) and higher C-reactive protein and homocysteine concentrations, which are particularly raised among migrant South Asians, are believed to further enhance the risk of developing CVD.81,82 We recently compared the secular trends in CVD risk profiles in a large South Asian stroke population in the United Kingdom compared with African-Caribbean and white Europeans89 and showed a significant trend toward increase in hypertension in all ethnic groups and, in particular, the prevalence of hyperlipidemia has increased, especially among South Asians (Figure 3). In addition, South Asian stroke survivors were found to have significantly higher apolipoprotein B to A1 ratios and higher lipoprotein (a) compared with ethnically matched healthy control subjects.83 This study highlights the importance of dyslipidemic management in the treatment and prevention of stroke in a multiethnic population, even where the underlying basis for disease etiology appears to be different.

Stroke Management

Variations in standards of stroke management are held to vary depending on the ethnicity of the sufferer.64 Like with other ethnicity-related epidemiological data concerning stroke, most of the evidence comes from literature comparing black, Hispanic, and white populations in the United States.65 In the majority of reported studies, ethnic minority groups appeared to enjoy a lower standard of care when compared with the indigenous white population.86 Nonetheless, there are inconsistencies in all stages of the data at different levels of stroke management (from acute presentation, imaging, pharmacological treatment, and rehabilitation to patient discharge). Indeed, Bhopal suggests that, in the United Kingdom, the standards of care for stroke survivors during all phases of the illness are lamentably poor, whatever one’s ethnicity.87

There are only a small number of studies that examine issues of stroke management in the migrant South Asian population in the United Kingdom.91,98 There have been no studies available for analysis from any South Asian countries. It is held that there are delays in access to health care that affect the South Asian population and result in South Asians being less likely to receive appropriate treatment.91 This is despite the fact that, as Hsu et al demonstrated, South Asians were more likely to seek early hospital treatment after an acute stroke compared with whites.

One of the contributory factors compounding poor standards of stroke care, particularly among South Asians, is the existence of barriers to communication, which can delay treatment as a result of an inability to express symptoms or communicate effectively, which results in a consequent inability to establish a medical history of the event. Feder et al also described the influence of the socioeconomic status of South Asians and its influence on the provision of culturally appropriate and sensitive health care. In common with the ethnic minority groups in the United States, South Asian patients with stroke in the United Kingdom are also more likely to have radiological investigations than the whites.91 Possible explanations include atypical presentation on admission and the unreliability of clinical symptoms entailing the deferment of a correct clinical diagnosis until further investigations are carried out. In addition, Bangladeshi stroke subjects were inadequately treated for lipid abnormalities when compared with the whites.92 There was, however, no disparity observed in the pattern of referrals for rehabilitation or carotid endarterectomy.91

The evidence from the United States as well as in the United Kingdom suggests that the management of CVD among ethnic minority groups, including South Asians, was hampered by lack of adequate service provision. This situation is made worse because of nonindividualized treatment strategies and a relatively small number of trials involving South Asians, particularly in cardiovascular research.65 Current treatment strategies may promote poorer health outcomes among marginalized groups because they are a distillation of the assumptions of the majority population. This relative lack of proactivity may have a profound impact on both the general population and South Asian migrants who, because of higher CVD risk, do not enjoy the advantage of a more leisurely approach to CVD management.

Conclusion

The incidence of stroke appears to be excessively higher in South Asians, when compared with whites, and this differ-
ence in risk continues to increase. The comparable rates of stroke prevalence between South Asians and whites indicate poorer survival in the former. Studies from India as well as the United Kingdom indicate a significant heterogeneity of stroke epidemiology even within the South Asian population. In India, for example, there is a perceptible rural–urban gradient in stroke prevalence, which can be partly explained by adverse socioeconomic circumstances, dietary habits, and lifestyle habits that have been transformed, particularly during last 2 decades. There are no reported migration-related studies to examine the impact of migration on stroke incidence in South Asians, particularly those living in western Europe.

The prevalence of hemorrhagic stroke among South Asians is higher compared with whites. This may be intimately associated with higher prevalence of hypertension. However, the increased prevalence of lacunar strokes appears to suggest a greater prevalence of small vessel disease in South Asians, which may be a consequence of abnormal metabolic and glycemic processes. The majority of outcome studies indicate higher stroke mortality in South Asians and glycemic status appears to be an independent predictor of long-term stroke mortality. More studies are, however, needed to explain the poorer short-term survival rate among South Asian patients with stroke.

There is now sufficient evidence to support the phenomenon of aberrant cardiovascular profiles in South Asian stroke survivors. Diabetes, hypertension, and hyperlipidemia are risk factors in >25% of the patients. More importantly, the prevalence of hypertension and hyperlipidemia has significantly increased during the last decade. The clustering effect of these risk factors on vessel wall characteristics in South Asians appears to contribute to their higher burden of disease and differing manifestations of stroke in this population. More studies are urgently needed, however, to explain these pathophysiological abnormalities and related stroke outcomes. There are limited data with which to examine the differences of stroke management South Asian stroke survivors. Available data appear to support the existence of inequalities in the standard of care available to the South Asian population in the United Kingdom. However, the existence of barriers to communication and other issues rather than ethnicity per se may serve to obfuscate the cause of lower standards of care among South Asians.92

The current lack of data regarding the exact relationship of stroke prevalence to environmental, genetic, and socioeconomic factors means that considerable numbers of marginalized groups will continue to bear an unacceptable high burden of mortality and morbidity from specific diseases such as CVD. This remains as a poor reflection on healthcare for stroke survivors. Diabetes, hypertension, and hyperlipidemia are risk factors in >25% of the patients. More importantly, the prevalence of hypertension and hyperlipidemia has significantly increased during the last decade. The clustering effect of these risk factors on vessel wall characteristics in South Asians appears to contribute to their higher burden of disease and differing manifestations of stroke in this population. More studies are urgently needed, however, to explain these pathophysiological abnormalities and related stroke outcomes. There are limited data with which to examine the differences of stroke management South Asian stroke survivors. Available data appear to support the existence of inequalities in the standard of care available to the South Asian population in the United Kingdom. However, the existence of barriers to communication and other issues rather than ethnicity per se may serve to obfuscate the cause of lower standards of care among South Asians.

Disclosures

None.

References

19. Hsu RT, Ardron ME, Brooks W, Cherry D, Taub NA, Botha JLT. The prevalence of hemorrhagic stroke among South Asians is higher compared with whites. This may be intimately associated with higher prevalence of hypertension. However, the increased prevalence of lacunar strokes appears to suggest a greater prevalence of small vessel disease in South Asians, which may be a consequence of abnormal metabolic and glycemic processes. The majority of outcome studies indicate higher stroke mortality in South Asians and glycemic status appears to be an independent predictor of long-term stroke mortality. More studies are, however, needed to explain the poorer short-term survival rate among South Asian patients with stroke.

There is now sufficient evidence to support the phenomenon of aberrant cardiovascular profiles in South Asian stroke survivors. Diabetes, hypertension, and hyperlipidemia are risk factors in >25% of the patients. More importantly, the prevalence of hypertension and hyperlipidemia has significantly increased during the last decade. The clustering effect of these risk factors on vessel wall characteristics in South Asians appears to contribute to their higher burden of disease and differing manifestations of stroke in this population. More studies are urgently needed, however, to explain these pathophysiological abnormalities and related stroke outcomes. There are limited data with which to examine the differences of stroke management South Asian stroke survivors. Available data appear to support the existence of inequalities in the standard of care available to the South Asian population in the United Kingdom. However, the existence of barriers to communication and other issues rather than ethnicity per se may serve to obfuscate the cause of lower standards of care among South Asians.

The current lack of data regarding the exact relationship of stroke prevalence to environmental, genetic, and socioeconomic factors means that considerable numbers of marginalized groups will continue to bear an unacceptably high burden of mortality and morbidity from specific diseases such as CVD. This remains as a poor reflection on healthcare systems because most, if not all, of the risk factors are reducible as is the economic burden of CVD. One can but reiterate the necessity of culturally sensitive management toward complex and disabling disease conditions such as stroke to minimize inequity of care, reinforcing the need for a greater number of hypothesis-driven studies that address specific elements of CVD in a coordinated manner, which allows full exchange of information while minimizing duplication of both studies and findings.

27. Deleted in proof.

50. Baird TA, Parsons MW, Phan C, Butler KS, Desmond PM, Tress BM, Colman PG, Chambers BR, Davis SM. Persistent post-stroke hyper-
Ischemic Stroke in South Asians: A Review of the Epidemiology, Pathophysiology, and Ethnicity-Related Clinical Features
Ashan Gunarathne, Jeetesh V. Patel, Brian Gammon, Paramjit S. Gill, Elizabeth A. Hughes and Gregory Y.H. Lip

Stroke. 2009;40:e415-e423; originally published online April 23, 2009; doi: 10.1161/STROKEAHA.108.535724

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/40/6/e415

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/