Does Diet Influence the Retinal Microvasculature in Children?

To the Editor:

The retinal microvasculature is anatomically and physiologically similar to the cerebral microcirculation, and may thus serve as a surrogate marker for small vessel disease in the brain that predisposes people to the development of stroke.1 The recent article by Kaushik and associates reports that higher glycemic index and lower cereal fiber diet are associated with stroke mortality in persons 50 years and older.2 An interesting finding was that 50% of this association was explained by a corresponding association between high glycemic index and low cereal fiber diet with larger retinal venular caliber, suggesting that the relationship of diet and stroke may be partly mediated by the microcirculation. This is further supported in another analysis of the same cohort in which decreased fish consumption was shown to be associated with similar retinal vascular caliber changes and stroke risk.3

A high glycemic index and low cereal fiber diet may contribute to vascular dysfunction through the formation of advanced glycation end products. However, many systemic diseases (eg, diabetes, hypertension) and eye diseases (eg, diabetic retinopathy, glaucoma) can also affect the state of the retinal microvasculature, and their influence cannot be completely controlled for by statistical modeling.2 Studying the retinal microvasculature in healthy children minimizes confounding by these systemic factors and is therefore an ideal approach for assessing the physiological influence of diet on the microcirculation. We analyzed the relationship between dietary factors and retinal vascular caliber in 823 healthy Singapore Chinese schoolchildren aged 12.8 (±0.8) years who underwent retinal photography and computerized measurement of retinal vascular caliber similar to Kaushik et al.4 Diet was assessed by interviewers using a validated semiquantitative food-frequency questionnaire adapted for teenagers.5 Linear regression models were constructed to assess the physiological influence of diet on the microcirculation. We revisited the link between the eye and brain.

Our findings in Singapore Chinese teenagers appear to contrast with Kaushik et al’s study in older white adults and suggest that the microvascular effects of diet may be evident only in later life. This would be consistent with a possible cumulative dose-dependent effect of diet on the retinal vasculature over time. Clearly, additional studies are needed to verify our hypothesis.

Further prospective evaluation of our cohort may shed more light into these mechanisms.

Disclosures

None.

Laurence S. Lim, MBBS
Singapore Eye Research Institute
Singapore
Singapore National Eye Centre
Singapore

Ning Cheung, MBBS
Centre for Eye Research Australia
University of Melbourne
Victoria, Australia

Seang Mei Saw, MBBS, PhD
Singapore Eye Research Institute
Singapore

Department of Community, Occupational, and Family Medicine

Yong Loo Lin School of Medicine
National University of Singapore
Singapore

Mabel Yap, MBBS
Health Promotion Board
Singapore

Tien Yin Wong, MBBS, PhD
Singapore Eye Research Institute
Singapore
Singapore National Eye Centre
Singapore
Centre for Eye Research Australia
University of Melbourne
Victoria, Australia

Table. Relationship Between Retinal Vascular Caliber and Dietary Components

<table>
<thead>
<tr>
<th></th>
<th>Retinal Arteriolar Caliber</th>
<th>Retinal Venular Caliber</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Regression Coefficient (95% CI)</td>
<td>P</td>
</tr>
<tr>
<td>Energy intake per day (g)</td>
<td>0.0002 (−0.001, 0.001)</td>
<td>0.62</td>
</tr>
<tr>
<td>Protein intake per day (g)</td>
<td>0.004 (−0.03, 0.04)</td>
<td>0.80</td>
</tr>
<tr>
<td>Saturated fat intake per day (g)</td>
<td>0.01 (−0.05, 0.07)</td>
<td>0.81</td>
</tr>
<tr>
<td>Monounsaturated fat intake per day (g)</td>
<td>0.01 (−0.06, 0.08)</td>
<td>0.72</td>
</tr>
<tr>
<td>Polyunsaturated fat intake per day (g)</td>
<td>0.01 (−0.11, 0.13)</td>
<td>0.91</td>
</tr>
<tr>
<td>Total fat intake per day (g)</td>
<td>0.01 (−0.02, 0.03)</td>
<td>0.71</td>
</tr>
<tr>
<td>Cholesterol intake per day (g)</td>
<td>0.003 (−0.002, 0.008)</td>
<td>0.27</td>
</tr>
<tr>
<td>Carbohydrate intake per day (g)</td>
<td>0.003 (−0.01, 0.01)</td>
<td>0.52</td>
</tr>
<tr>
<td>Fibre intake per day (g)</td>
<td>0.06 (−0.06, 0.17)</td>
<td>0.35</td>
</tr>
<tr>
<td>Sugar intake per day (g)</td>
<td>0.004 (−0.02, 0.02)</td>
<td>0.71</td>
</tr>
<tr>
<td>Ratio of energy intake to energy requirements per day</td>
<td>0.16 (−2.54, 2.87)</td>
<td>0.91</td>
</tr>
</tbody>
</table>

*Adjusted for age, gender, mean arterial blood pressure, body mass index.
Does Diet Influence the Retinal Microvasculature in Children?
Laurence S. Lim, Ning Cheung, Seang Mei Saw, Mabel Yap and Tien Yin Wong

Stroke. 2009;40:e473-e474; originally published online April 23, 2009;
doi: 10.1161/STROKEAHA.108.545616

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/40/6/e473

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/