Tobias Kurth, MD, ScD; Christophe Tzourio, MD, PhD

See related article, pages 2433-2437.

The opinions in this editorial are not necessarily those of the editors or of the American Heart Association.

From the INSERM Unit 708–Neuroepidemiology (T.K., C.T.) and Faculty of Medicine, University Pierre et Marie Curie, Paris, France; Division of Preventive Medicine (T.K.), Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Mass; Department of Epidemiology (T.K.), Harvard School of Public Health, Boston, Mass.

Correspondence to Tobias Kurth, MD, ScD, INSERM Unit 708–Neuroepidemiology, Hôpital de la Pitié-Salpêtrière, 47 boulevard de l’Hôpital, 75651 Paris Cedex 13, France. E-mail tobias.kurth@upmc.fr

© 2009 American Heart Association, Inc.

Stroke is available at http://stroke.ahajournals.org

DOI: 10.1161/STROKEAHA.109.552398

Numbers needed to treat (NNT) is a powerful tool that has been proposed to translate research findings of treatment effects to an intuitive figure for clinical settings or for policy-making purposes. It is a measure of clinical benefits that describes the number of individuals who would need to be treated to prevent the occurrence of 1 outcome event.1 NNT, most commonly, is simply calculated by the inverse of the absolute risk difference between 2 treatment options.

However, important limitations should be considered when using NNT in communicating research findings. First, as with all relative or absolute treatment effect measures, causality must be assumed, which even in the setting of randomized controlled trials is not guaranteed if, for example, compliance or follow-up rates differ according to treatment groups or blinding of treatments cannot be achieved. Second, NNT is specific to a comparison of treatment effects in 1 study population. Thus, it should be considered specific to a particular comparison and not necessarily to a particular therapy.2 Strictly speaking, NNT only applies to patients of a specific trial and the application of this NNT to any other setting is an extrapolation, which may or may not be valid. Third, the NNT will vary across groups with different baseline risks for the outcome, even if the overall drug effect is similar across groups.3 As an example, a meta-analysis of baseline risks for the outcome, even if the overall drug effect is similar across groups.3 As an example, a meta-analysis of

The ratio of these 2 NNT values, ie, the likelihood of harm to help, is 6, indicating that 6 times more patients with ischemic stroke would benefits from tPA therapy given in the 1- to 3-hour window was used to treat patients with ischemic stroke treated with tPA in the 3- to 4.5-hour window than having a resulting harm of that therapy. Applying these results to 100 patients with ischemic stroke treated with tPA in the 1- to 3-hour time window, 16 will have a better and 3 will have a worse outcome.

A close inspection of the data reveals, however, a substantial source of heterogeneity when comparing benefits and harm in dichotomized mRS classes. Although most comparisons of net NNT-to-benefit-to-harm indicate a benefit, the contrast of the 2 most severe functional outcomes (mRS, 5 or 6) to all better functional outcomes indicate substantial harm. Whereas this finding may be attributable to chance, it raises questions as to whether the treatment effect is steady across the mRS and whether the avoidance of this clinically important outcome (ie, avoiding dependency or death from stroke) should be addressed differently in future studies. The authors then compare the NNT analysis from ECASS 3 to the NNT analysis from the NINDS tPA Study, in which a 1- to 3-hour window was used to treat patients with ischemic stroke with tPA. Across all 7 levels of the mRS, the NNT-to-harm was similar as in the ECASS 3 trial (3/100 patients), but the benefit was doubled in the 1- to 3-hour window.
window (32/100 patients) as compared with the 3- to 4.5-hour window (16/100 patients).

How do these results translate to everyday clinical practice? As discussed by the authors, the NNT-to-benefit/harm results are limited to patients who, based on inclusion and exclusion criteria, would have participated in ECASS 3 and may differ for other stroke patients. Indeed, at least the results of harm attributable to tPA vary strongly across different target populations. Thus, an important aim will remain to identify patients with ischemic stroke who benefit the most and who have less detrimental effects from tPA therapy. In this regard, the NNT should not be viewed as the deterministic value for all clinical settings but may serve as an additional guide to support treatment decisions based on individual patient characteristics. Although the NNT from ECASS 3 support benefits from tPA therapy applied in the 3- to 4.5-hour window, the contrast of the NNT to benefit from ECASS 3 and the NINDS trial even more strongly underscores the importance of applying tPA treatment as early as possible.

Disclosures
Dr Kurth has received investigator-initiated research funding from McNeil Consumer & Specialty Pharmaceuticals, Merck, the National Institutes of Health, and Wyeth Consumer Healthcare. He is a consultant to i3 Drug Safety and to World Health Information Science Consultants, LLC. He also received honoraria from Genzyme, Merck, and Pfizer for educational lectures. Dr Tzourio has received investigator-initiated research funding from the French National Research Agency (ANR) and has received fees from Sanofi-Synthelabo for participation in a data safety monitoring board and from Merck-Sharp & Dohme for participation in a scientific committee.

References
2. McAlister FA. The “number needed to treat” turns 20—and continues to be used and misused. CMAJ. 2008;179:549–553.

Key Words: methodology stroke care tissue plasminogen activator
Treating Patients With Ischemic Stroke With Tissue Plasminogen Activator in the 3.5- to 4-Hour Window: Numbers Support Benefit but the Message Is to Still Go Fast

Tobias Kurth and Christophe Tzourio

Stroke. 2009;40:2295-2296; originally published online June 4, 2009;
doi: 10.1161/STROKEAHA.109.552398

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/40/7/2295