Efficacy and Safety of Tissue Plasminogen Activator 3 to 4.5 Hours After Acute Ischemic Stroke A Metaanalysis

Maarten G. Lansberg, MD, PhD; Erich Bluhmki, PhD; Vincent N. Thijs, MD, PhD

Background and Purpose—The Third European Cooperative Acute Stroke Study (ECASS-3) demonstrated a benefit of treatment with intravenous tissue plasminogen activator (tPA) for acute stroke in the 3- to 4.5-hour time-window. Prior studies, however, have failed to demonstrate a significant benefit of tPA for patients treated beyond 3 hours. The purpose of this study was to produce reliable and precise estimates of the treatment effect of tPA by pooling data from all relevant studies.

Methods—A metaanalysis was undertaken to determine the efficacy of tPA in the 3- to 4.5-hour time-window. The effect of tPA on favorable outcome and mortality was assessed.

Results—The metaanalysis included data from patients treated in the 3- to 4.5-hour time-window in ECASS-1 (n=234), ECASS-2 (n=265), ECASS-3 (n=821) and The Alteplase Thrombolysis for Acute Noninterventional Therapy in Ischemic Stroke (ATLANTIS) (n=302). tPA treatment was associated with an increased chance of favorable outcome (odds ratio 1.31; 95% CI: 1.10 to 1.56; P = 0.002) and no significant difference in mortality (odds ratio 1.04; 95% CI: 0.75 to 1.43; P = 0.83) compared to placebo treated patients.

Conclusions—Treatment with tPA in the 3- to 4.5-hour time-window is beneficial. It results in an increased rate of favorable outcome without adversely affecting mortality.

Key Words: acute stroke n thrombolysis n metaanalysis

In 1996, based on the results of the 2-part National Institutes of Neurological Disorders and Stroke (NINDS) acute stroke trial, the FDA approved intravenous tissue plasminogen activator (tPA) for treatment of acute ischemic stroke up to 3 hours after symptom onset.1 The recently published European Cooperative Acute Stroke Study (ECASS)-3 study results are the first data from a randomized placebo-controlled trial that demonstrate efficacy of intravenous tPA beyond the established 3-hour time-window.2 In ECASS-3, 821 stroke patients were randomized between treatment with placebo and tPA in the 3- to 4.5-hour time-window after acute ischemic stroke. Compared to placebo-treated patients, tPA-treated patients experienced a 7.2% absolute increase in the rate of excellent recovery at 90-day follow-up (P = 0.04). Although tPA therapy was associated with an increased rate of symptomatic intracerebral hemorrhage (7.9% for tPA versus 3.5% for placebo, P < 0.001), it was not associated with an increased rate of death (7.7% for tPA versus 8.4% for placebo, P = 0.68). These results differ from those of previous studies that have assessed the effect of tPA beyond the 3-hour time-window.3-5 In ATLANTIS part B, which resembles ECASS-3 most closely, tPA was associated with only a 2% increased rate of excellent outcome (not significant), a 5.4% higher rate of symptomatic intracerebral hemorrhage (P < 0.001), and a 4% increased rate of death (P = 0.09). The inferiority of the ATLANTIS results compared to ECASS-3 may be due to the longer treatment time-window in ATLANTIS part B (3- to 5-hour window with a median time-to-treatment of 4 hours 36 minutes in ATLANTIS part B versus a 3- to 4.5-hour time window with a median time to treatment of 3 hours 59 minutes in ECASS-3). The marginal significance with which superiority of tPA over placebo was demonstrated in ECASS-3 and the lack of a confirmatory randomized controlled trial of tPA in the 3- to 4.5-hour time-window may cast doubt on the true efficacy of tPA in this time-window. In order to arrive at a more robust estimate of the treatment effect, we conducted a metaanalysis of patients treated in the 3- to 4.5-hour time-window from all major tPA stroke trials to date.2,6

Materials and Methods
Randomized controlled trials (n > 100) of intravenous tPA for treatment of acute ischemic stroke with outcome data on patients who

Continuing medical education (CME) credit is available for this article. Go to http://cme.ahajournals.org to take the quiz.

Received March 14, 2009; final revision received April 24, 2009; accepted April 27, 2009.
From the Stanford Stroke Center (M.G.L.), Stanford University Medical Center, Palo Alto, Calif; the Department of Neurology (V.N.T.), University Hospitals of Leuven, Belgium; the Vesalius Research Center (V.N.T.), Leuven, Belgium; and Boehringer Ingelheim Pharma GmbH & Co (E.B.), Germany.
Correspondence to Maarten G. Lansberg, Stanford Stroke Center, 701 Welch Road, Suite B325, Palo Alto, CA 94304-9705, USA. E-mail lansberg@stanford.edu
© 2009 American Heart Association, Inc.

Stroke is available at http://stroke.ahajournals.org

DOI: 10.1161/STROKEAHA.109.552547

2438
were treated between 3 and 4.5 hours after stroke were selected for the metaanalysis. Studies were identified based on a search of the PubMed database and based on the authors’ knowledge of the stroke literature. All analyses were based on the intention-to-treat populations of the identified studies. Outcomes analyzed included (1) good functional outcome on a global outcome measure (a global odds ratio test based on 3 individual outcome scales at day 90: modified Rankin Scale (mRS) 0 to 1, NIHSS 0 to 1, and Barthel Index ≥95); (2) good functional outcome defined as a score of 0 to 1 on the modified Rankin Scale at day 90; and (3) mortality. The global odds ratio test for this metaanalysis was slightly different from the global odds ratio test used for the individual analyses of the NINDS and ECASS-3 stroke trials in that it did not include the Glasgow Outcome Scale as a fourth variable.1–2 The Glasgow Outcome Scale was excluded in the metaanalysis because it was not assessed in all studies. Minor differences between the previously published ECASS-3 results2 and the results reported in this metaanalysis stem from exclusion of the Glasgow Outcome Scale. If relevant outcome data were not published, the sponsor of the study was contacted and additional data were requested. Pooled odds ratios describing the treatment effect of tPA were computed with commercially available software (SAS version 9.2, Cary, NC).

Results

Patients treated between 3 and 4.5 hours after symptom onset in the ECASS-1, ECASS-2, ECASS-3, and ATLANTIS studies were included in the analysis.2–5 Baseline characteristics of the 3- to 4.5-hour treatment cohort for each study are listed in the Table. Treatment with tPA in the 3- to 4.5-hour time-window is associated with an increased chance of favorable outcome based on the global outcome measure \(OR_{\text{Global Outcome Measure}} = 1.31, P=0.002 \) and the mRS \(OR_{\text{mRS 0 to 1}} = 1.31, P=0.008 \), without adversely affecting 90-day mortality \(OR_{\text{mortality}} = 1.04, P=0.83; \) Figure) Because a relatively high dose of tPA was administered to patients enrolled in ECASS-1 (1.1 mg/kg), a separate metaanalysis was conducted including only the 3 studies that used an intravenous tPA dose of 0.9 mg/kg. In this subset the association between tPA and favorable outcome remained essentially unchanged \(OR_{\text{Global Outcome Measure}} = 1.27, P=0.01; OR_{\text{mRS 0 to 1}} = 1.28, P=0.03 \). Exclusion of ECASS-1 from the analysis reduced the odds ratio for 90-day mortality associated with tPA from 1.04 to 0.87, but the association remained nonsignificant (95% CI 0.60 to 1.26; \(P=0.46 \)).

Discussion

This metaanalysis provides strong evidence for the efficacy of tPA treatment in the 3- to 4.5-hour time-window. Pooling of ECASS-3 data with data from prior studies of tPA in the 3- to 4.5-hour time-window approximately doubled the available sample size (from 821 to 1622). In this large sample the benefit of tPA in the 3- to 4.5-hour time-window was demonstrated with great statistical confidence as illustrated by a probability value of 0.002. This is in contrast with the ECASS-3 study results and the results of the previously published pooled analysis of NINDS, ECASS-1, ECASS-2 and ATLANTIS, which each showed a benefit, but only with marginal statistical significance.2–6 Based on this metaanalysis the odds of a favorable outcome are increased by 31% for stroke patients treated with tPA in the 3- to 4.5-hour time-window.

Given the increased risk of intracerebral hemorrhage with tPA treatment, close attention has been paid to the safety profile of tPA. The ATLANTIS study results raised some safety concern for patients treated with tPA between 3 and 5 hours after symptom onset.3 In this cohort, 90-day mortality was higher in patients treated with tPA (11.0%) compared to placebo (6.9%, \(P=0.09 \)). Our analysis demonstrates that no consistent association exists between tPA treatment in the 3- to 4.5-hour time-window and 90-day mortality; whereas tPA was associated with nonsignificant increases in 90-day mortality in ATLANTIS and ECASS-1, a significant reduction in 90-day mortality was observed in ECASS-2, and a nonsignificant reduction in ECASS-3. These discrepancies are likely due to chance effects, which are reduced by pooling of the data. Consequently, our metaanalysis provides the most reliable and precise estimate available to date of the effect of tPA treatment in the 3- to 4.5-hour time-window on mortality. The odds ratio of 1.04 (\(P=0.83 \)) for 90-day mortality suggests that the effect of tPA on mortality is neutral.

The studies included in this metaanalysis were very similar in design. All 4 were randomized controlled trials of intravenous tPA for acute ischemic stroke. Time-to-treatment, a variable that is well known to modify the response to tPA, was well-matched between the cohorts of patients from the different studies that were included in this metaanalysis (Table). There were, however, also differences between the studies that may account for some of the variability in the outcomes. For example, the higher dose of intravenous tPA in ECASS-1 compared to the other studies (1.1 mg/kg versus 0.9 mg/kg) may have led to an increased rate of symptomatic intracranial hemorrhage which, in turn, could partially account for the increased 90-day mortality rate associated with tPA in ECASS-1. Similarly, a relatively high proportion of patients with extended early infarcts signs in ECASS-1 may have

Table. Characteristics of the Cohort of Patients Treated With tPA Between 3 to 4.5 Hours in the ECASS-1, ECASS-2, ECASS-3, and ATLANTIS Studies

<table>
<thead>
<tr>
<th>Study Characteristic</th>
<th>ECASS-1</th>
<th>ECASS-2</th>
<th>ECASS-3</th>
<th>ATLANTIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>234</td>
<td>265</td>
<td>821</td>
<td>302</td>
</tr>
<tr>
<td>Mean age (SD)</td>
<td>64.7 (11.9)</td>
<td>65.5 (11.0)</td>
<td>65.2 (11.6)</td>
<td>65.4 (11.6)</td>
</tr>
<tr>
<td>Mean NIHSS score (SD)</td>
<td>15.2 (5.7)</td>
<td>13.5 (5.7)</td>
<td>11.2 (5.8)</td>
<td>13.0 (6.2)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>15.8%</td>
<td>17.7%</td>
<td>15.7%</td>
<td>21.2%</td>
</tr>
<tr>
<td>Median NIHSS score</td>
<td>15</td>
<td>13</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Median time-to-treatment</td>
<td>3 hours 50 minutes</td>
<td>3 hours 55 minutes</td>
<td>3 hours 58 minutes</td>
<td>4 hours 1 minute</td>
</tr>
</tbody>
</table>
contributed to the excess 90-day mortality rate in this study. A separate analysis, excluding ECASS-1, was run to assess the impact of ECASS-1 on the overall metaanalysis results. The association between tPA and favorable outcome remained essentially unchanged in this subanalysis, whereas the odds ratio for 90-day mortality reduced slightly from 1.05 to 0.87, but remained nonsignificant. The ECASS-3 study was unique in excluding patients who had a combination of previous stroke and diabetes mellitus. Exclusion of this subgroup, however, does not appear to have improved the efficacy of tPA. In fact, both ECASS-1 and ECASS-2 had slightly higher odds ratios for favorable outcome with tPA than ECASS-3, whereas only ATLANTIS had a lower odds ratio for favorable outcome. The lack of efficacy of tPA therapy in the 3- to 4.5-hour cohort of the ATLANTIS study is likely due to chance because there are no obvious differences in study design between ATLANTIS and the ECASS studies to account for this lack of efficacy. Hypothetically, differences in baseline demographics favoring placebo-treated patients could have contributed to the lack of observed efficacy of tPA in the 3- to 4.5-hour cohort of ATLANTIS. The only data to support this hypothesis is that diabetes was more common in tPA-treated patients than controls in the overall 3- to 5-hour ATLANTIS cohort (n=613). Whether a similar imbalance in diabetes or other imbalances were present in the subset of ATLANTIS patients treated between 3 and 4.5 hours (n=302) has not been investigated.

In summary, the results of this metaanalysis strengthen the evidence that treatment with tPA in the 3- to 4.5-hour

Figure. Comparison of tPA versus placebo in the 3- to 4.5-hour time-window after acute ischemic stroke. Three 90-day end points were assessed: favorable outcome using a global outcome measure (panel A), favorable outcome defined as a mRS score of 0 to 1 (panel B), and mortality (panel C). The global outcome measure is a global odds ratio derived from a statistical model that takes into account the outcome on 3 individual outcome scales at day 90: mRS 0 to 1, NIHSS 0 to 1, and Barthel Index ≥95. Number of event ratios are not listed for this outcome measure because these cannot be derived from the model.
window is beneficial and should therefore be taken into consideration for stroke patients who present during this time-window.

Sources of Funding
The funding for this study was provided by National Institutes of Health (NIH) grants K23 NS051372 (to M.G.L.) and the Fonds voor Wetenschappelijk Onderzoek (to V.N.T.).

Disclosures
Dr Bluhmki is an employee of Boehringer Ingelheim Pharma GmbH & Co, Germany. There are no other conflicts to report.

References
Efficacy and Safety of Tissue Plasminogen Activator 3 to 4.5 Hours After Acute Ischemic Stroke: A Metaanalysis
Maarten G. Lansberg, Erich Bluhmki and Vincent N. Thijs

Stroke. 2009;40:2438-2441; originally published online May 28, 2009;
doi: 10.1161/STROKEAHA.109.552547

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/40/7/2438