MR Mismatch and Thrombolysis
Appealing but Validation Required

Stephen M. Davis, MD, FRACP; Geoffrey A. Donnan, MD, FRACP

Since the initial description of the ischemic penumbra 30 years ago, the concept of rapid restoration of blood flow to threatened brain tissue has been the “holy grail” of acute stroke therapy.\(^1,^2\) Despite its drawbacks, MR imaging of perfusion diffusion mismatch remains the most widely used and practical means of in vivo assessment.

There is accumulating evidence linking reperfusion with better clinical outcomes and attenuation of infarct growth in patients with MR mismatch. However, validation that imaging effectively selects thrombolytic responders is still lacking. Both protagonists have highlighted areas of uncertainty in definition of MR mismatch. In our view, these include optimizing the ratio between PWI and DWI, choice of metric (we find Tmax, the time to peak of residue function, most useful), and choice of threshold to exclude benign oligemia (Tmax 4 to 6 appears to be better than Tmax 2).\(^3,^4\)

Another key question is the option of excluding large DWI volumes to reduce the risk of hemorrhagic transformation and poor outcome with thrombolysis. We consider that baseline core infarct volumes of >100 mL on DWI should be excluded.\(^5,^6\)

As mentioned by both protagonists, there have been 3 key trials that have addressed the question of MR mismatch and thrombolysis, namely DEFUSE,\(^6\) EPITHET,\(^7\) and ECASS III.\(^8\) The former 2 provided biological evidence to support a strong relationship between reperfusion, attenuation of infarct growth, and improved clinical outcomes. Indeed in EPITHET, tPA significantly enhanced reperfusion in the 3- to 6-hour time window. Although neither EPITHET nor DEFUSE selected patients based on the mismatch, these results do provide support for the concept of mismatch as a selection criterion in future trials. Of the 3 trials, only DIAS-2 actually used the principal of penumbral selection, with the “eyeball technique” at individual centers. How do we explain this unexpected result?

As mentioned in part by our protagonists, possible explanations include the mild stroke severity in the DIAS-2 cohort, the use of CT perfusion (CTP) in about one third of cases, small sample size for a phase III trial, and the chance occurrence of late nonneurological deaths in the high-dose treatment group.

A particular issue arising from DIAS-2 is the use of the “eyeball technique” in penumbral selection. Without thresholding and standardization of the perfusion metric, the probability that most of the PWI images contain benign oligemia is high. In other words, many nonpenumbral patients would have been entered into the trial. To reduce error and truly operationalize penumbral selection uniformly across centers, automated online imaging is an urgent priority. We conclude that the potential of MR mismatch remains obvious, but a number of refinements are needed. Clearly, a large Phase III trial is required for validation of the principle of MR mismatch in treatment selection. To this end, our EXTEND trial is planned to commence during 2009.

Disclosures

None.

References


KEY WORDS: diffusion-weighted imaging ■ thrombolysis ■ MR mismatch ■ controversies

Received and accepted March 17, 2009.
From the Department of Neurology, Royal Melbourne Hospital, Parkville Vic Australia.
Correspondence to Professor Stephen Davis, Divisional Director of Neurosciences, Director of Neurology, Royal Melbourne Hospital, Parkville Vic Australia 3050. E-mail linda.foottit@mhealth.org.au
(Stroke. 2009;40:2910.)
© 2009 American Heart Association, Inc.

Stroke is available at http://stroke.ahajournals.org

DOI: 10.1161/STROKEAHA.109.552893
MR Mismatch and Thrombolysis: Appealing but Validation Required
Stephen M. Davis and Geoffrey A. Donnan

Stroke. 2009;40:2910; originally published online June 4, 2009; doi: 10.1161/STROKEAHA.109.552893
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2009 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/40/8/2910

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/