Long-Term Outcome After Suboccipital Decompressive Craniectomy for Malignant Cerebellar Infarction

Thomas Pfefferkorn, MD; Ursula Eppinger; Jennifer Linn, MD; Tobias Birnbaum, MD; Jürgen Herzog, MD; Andreas Straube, MD; Martin Dichgans, MD; Stefan Grau, MD

Background and Purpose—Suboccipital decompressive craniectomy (SDC) is a life-saving intervention for patients with malignant cerebellar infarction. However, long-term outcome has not been systematically analyzed.

Methods—In this monocentric retrospective study we analyzed mortality, long-term functional outcome, and quality of life of all consecutive patients that were treated by SDC for malignant cerebellar infarction in our institution between 1995 and 2006.

Results—A total of 57 patients were identified. All of them were treated by bilateral SDC. An external ventricular drainage was inserted in 82%, necrotic tissue was evacuated in 56% of patients. There were no fatal procedural complications. Five patients were lost for follow-up. In the remaining 52 patients, the mean follow-up interval was 4.7 years (1 to 11 years). Within the first 6 months after surgery 16 of 57 patients (28%) had died. At follow-up, 21 of 52 patients (40%) had died and 4 patients (8%) lived with major disability (mRS 4 or 5). Twenty-one patients (40%) lived functionally independent (mRS 0 to 2). The presence of additional brain stem infarction was associated with poor outcome (mRS ≥4; hazard ratio: 9.1; P=0.001). Quality of life in survivors was moderately lower than in healthy controls.

Conclusions—SDC is a safe procedure in patients with malignant cerebellar infarction. Infarct- but not procedure-related early mortality is substantial. Long-term outcome in survivors is acceptable, particularly in the absence of brain stem infarction. (Stroke. 2009;40:3045-3050.)

Key Words: cerebellar infarction ▪ craniectomy ▪ outcome

Patients with cerebellar infarction initially often present with only minor symptoms such as ataxia and oculomotor dysfunction. However, within a few days, a subset of patients dramatically deteriorates because of infarct swelling with consecutive brain stem compression, transforaminal or transtentorial herniation, and occlusive hydrocephalus.1–6 Although results from prospective randomized trials are lacking, suboccipital decompressive craniectomy (SDC) and insertion of an external ventricular drainage (EVD) are currently recommended as the therapy of choice in the guidelines of the American Stroke Association7 and the European Stroke Organization.8

Numerous reports suggest that SDC reduces mortality in malignant cerebellar infarction.2,3,6,9–17 However, little is known about the long-term outcome in survivors.

In this monocentric retrospective analysis, we evaluated mortality, long-term functional outcome, quality of life, and prognostic factors in patients with malignant cerebellar infarction treated by standardized SDC.

Patients and Methods

Patient Identification

All patients with acute cerebellar infarction that were treated by SDC in our institution between 1995 and 2006 were included. Patients were identified from a computerized database in which basic data of all stroke patients admitted to our center since 1995 had been prospectively collected.

Surgical Procedure and Medical Management

All patients were treated following a standardized surgical protocol for SDC established in 1995. According to this protocol, SDC was considered the treatment of choice in patients with clinical deterioration and radiological evidence of acute space-occupying cerebellar infarction with signs of brain stem compression, imminent transforaminal/transtentorial herniation, or occlusive hydrocephalus. The surgical protocol aimed at gaining as much additional space as possible for brain swelling. Therefore, the protocol included extension of the craniectomy to the contralateral side to enable lateral cerebellar movement, and evacuation of necrotic tissue. The protocol was kept constant throughout the study period and defined the following surgical interventions: (1) extensive bilateral SDC with duraplasty, optional resection of the posterior arch of atlas, (2) preceding insertion of an EVD in the case of hydrocephalus, and (3) evacuation of necrotic tissue.

Medical management generally followed the German and European guidelines on acute stroke care validated at the time of patient admission. If malignant swelling was expected and SDC considered an option, antiplatelet therapy was withheld. In this case, patients received low-dose heparin only. Osmotic substances such as mannitol were usually not given. Only in the case of acute herniation,
mannonit was used as a bridging therapy followed by immediate SDC.

Data Retrieval From Patient Charts

The following data were retrieved from medical charts: age, sex, comorbid conditions, vascular risk factors, clinical presentation, clinical course, infarct etiology and extension, modality of admission, time to surgery, details of the surgical procedure, procedural complications, and short-term outcome including in-house mortality. Diagnostic workup to define infarct etiology regularly included imaging of extra- and intracranial vessels (Doppler and Duplex sonography, CT angiography, MR angiography), Holter-ECG, and transthoracic or transesophageal echocardiography. Comorbidity was quantified by the Charlson Index, a validated measure of preexisting morbidity.18

Neuroradiological Analysis

Neuroradiological images of all patients were reanalyzed by an experienced neuroradiologist (J.L.). Emphasis was placed on any underlying arterial pathology and the exact infarct extension. Diagnosis of brain stem infarction was made on the basis of MRI or clear evidence of infarction on CT.

Long-Term Follow-Up

Long-term outcome was assessed in 2007. Patients were contacted by telephone. Their clinical status was documented using a structured interview and the modified Rankin Scale (mRS).19 In addition to this telephone interview, patients were asked to answer a mailed 36-Item Short-Form Health Survey (SF-36) questionnaire.20 The SF-36 is widely used to measure health-related quality of life and has been validated for patients after stroke.21,22 It assesses 8 domains on physical, emotional, and mental functioning. Results were compared to historical populations of healthy Germans,23 nonselected stroke survivors,24 and patients with hemicraniectomy for malignant middle cerebral artery infarction.25–27 The following parameters were selected as variables for poor outcome: age ≥60 years, Charlson Index ≥3, GCS before surgery ≤8, time to surgery ≥3 days, evacuation of necrotic tissue during surgery, bilateral cerebellar infarction, and neuroradiological evidence of brain stem infarction.

Statistical Analysis

The statistical software package SPSS 13.0 was used. Values are given as mean±SD. Because of the low number of patients and outcomes we did not perform a logistic regression analysis on variables possibly predicting poor outcome. Instead, we performed an univariate analysis using the Fisher exact test.

Results

Patient Characteristics

A total of 322 patients with acute cerebellar infarction were identified. Fifty-seven of them (18%) were treated by SDC. The mean age was 59.2 years. To receive surgical treatment, most patients (70%) had to be referred to our stroke center from nearby community hospitals (Table 1). Only a minority of patients (18%) were affected by substantial comorbidity.

Table 1. Patient Characteristics

<table>
<thead>
<tr>
<th>Basic data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mean±SD)</td>
<td>59.2±12.9 years (27 to 81 years)</td>
</tr>
<tr>
<td>Male gender</td>
<td>34/57 (60)</td>
</tr>
<tr>
<td>Referral from community hospital</td>
<td>40/57 (70)</td>
</tr>
</tbody>
</table>

Premorbid status

Charlson Index ≥3*	10/55 (18)
mRS ≥1	14/55 (25)
mRS ≥2	10/55 (18)
mRS ≥3	2/55 (4)

Vascular risk factors

Arterial hypertension	43/54 (80)
Diabetes	17/53 (32)
Hypercholesterolemia	16/54 (30)
Active smoking	13/54 (24)

Infarct extension

Cerebellar	57/57 (100)
-unilateral	36/57 (63)
-bilateral	21/57 (37)
-PICA	51/57 (100)
-SCA	31/57 (61)
-AICA	12/57 (24)
Brainstem	29/57 (51)
PCA	16/57 (31)

Infarct etiology

Large vessel disease	27/57 (47)
Cardiac embolism	7/57 (12)
Vertebral artery dissection	7/57 (12)
Others or unknown	16/57 (28)

Documented arterial occlusion/stenosis

Basilar artery occlusion	15/57 (26)
Vertebral artery occlusion	5/57 (9)
Vertebrobasilar stenosis	7/57 (12)

Surgical procedure

SDC	57/57 (100)
EVD	47/57 (82)
Infarct evacuation	32/57 (56)

*Values indicate the No. of affected patients to the No. of patients available for analysis and the respective percentage (%). *Values ≥3 indicate substantial comorbidity.14 PICA indicates posterior inferior cerebellar artery; SCA, superior cerebellar artery; AICA, anterior inferior cerebellar artery; PCA, posterior cerebral artery; SDC, suboccipital decompressive cranietomy; EVD, external ventricular drain.
(Charlson Index ≥3), whereas most patients had 1 or more cardiovascular risk factors such as arterial hypertension, diabetes mellitus, or hypercholesterolemia (Table 1). Prior to the cerebellar infarction, almost all patients were functionally independent (Table 1). In the 2 patients with a mRS ≥3, functional dependency was attributable to surgery 2 days before the infarction (hysterectomy and sigma resection, respectively).

Clinical Presentation and Preoperative Course
The most frequent symptoms at onset were vertigo, nausea, and headache. The most frequent neurological signs on admission were ataxia, oculomotor dysfunction, and dysarthria/dysphagia (Table 1). Details on the clinical course before surgery were poorly documented in the patients’ charts. Of all clinical data before surgery, only the GCS could be reliably retrieved. According to that, consciousness decreased in most patients (86%) between admission and surgery with a mean GCS drop from 12.6±3.9 to 9.7±4.0.

Infarct Etiology and Neuroradiological Findings
Diagnostic work-up revealed large vessel disease as the most frequent etiology, followed by cardiac embolism and vertebral artery dissection (Table 1). All patients received at least one CT scan, in 33 patients an additional MRI was performed to better delineate infarct extension. Cerebellar infarction was bilateral in 37% of patients (Table 1). The territory of the posterior inferior cerebellar artery (PICA) was always affected. Additional brain stem infarction was found in 51% of patients (Table 1). In the 15 patients (26%) with radiologically documented basilar artery occlusion, recanalization had been achieved before SDC.

Surgical Procedure
In all patients the decision for SDC was made after clinical deterioration and in the presence of radiological signs of brain stem compression, imminent transforaminal/transtentorial herniation, or occlusive hydrocephalus. In all patients SDC was bilateral. Evacuation of necrotic tissue was performed in 56% of patients. An EVD was inserted in 82% of patients. In all but 1 patient (98%) the EVD could be removed within days to weeks. In 1 patient the EVD was eventually replaced by a permanent ventriculo-peritoneal shunt. The mean interval from symptom onset to SDC was 2.1±1.7 days (range=0 to 9 days). Nonfatal procedural complications were seen in 10 patients (18%) and included CSF leakage (n=5), meningitis (n=3), and ventriculitis (n=3).

Six additional patients were treated by only inserting an EVD. This was a consequence of impossible surgical positioning in 1 patient with severe comorbidity. In the other 5 cases, it was based on the surgeon’s individual decision for reasons that could not be clearly identified from patient charts in this retrospective analysis. Because of the obvious violation of the standard surgical protocol and the very low number of patients treated by “EVD alone,” we did not include these patients in any further analysis.

Early Course and Mortality
All patients were treated and monitored on our neurological intensive care unit (ICU) or dedicated stroke unit (SU). The mean duration of ICU or SU treatment was 17.3±10.8 days (range: 3 to 42 days). During this phase, 12 patients died (21%), in all of them mortality was related to the initial infarction: 9 patients died from extensive brain stem infarction, 3 patients from progressive brain stem compression despite SDC. The surviving 45 patients (79%) were referred to neurological rehabilitation. Six months after the cerebellar infarction, 16 of 57 patients (28%) had died (Figure 1).

Long-Term Outcome
After a mean follow-up period of 4.7±2.9 years (range: 1 to 11 years), 21 of 52 patients (40%) had died. None of the late deaths (>6 months after SDC) were related to the initial cerebellar infarction. Five patients were lost for follow-up, leaving 31 survivors. Four of these patients lived with persisting major disability (mRS 4 to 5). Thirteen patients (25%) had an mRS of 0 to 1, 21 patients (40%) an mRS of 0 to 2, and 27 patients (52%) an mRS of 0 to 3. Further details on functional outcome are presented in Figure 2. Twenty-six
survivors returned their SF-36 questionnaires. For each individual item, our patients scored moderately lower than controls (Figure 3), which confirmed the expected moderate impairment of quality of life. When compared to historical populations of stroke survivors from the International Stroke Trial22 and patients after hemicraniectomy for malignant middle cerebral artery infarction,24 our patients scored similar in 6 of 8 items but substantially better in 2 items: physical functioning (55 versus 30 versus 31) and physical role functioning (44 versus 20 versus 6). When asked to look back, 26 of 27 responding patients (96%) felt that surgery had been the right decision for them.

Factors Associated With Poor Outcome
In univariate analysis, only neuroradiological evidence of brain stem infarction was associated with poor outcome (mRS ≥4) at follow-up (Table 2, Figure 2). Other factors such as age, gender, GCS before surgery, comorbidity, time to surgery, and bilateral versus unilateral cerebellar infarction showed no significant association with poor outcome.

Discussion
We present an analysis of long-term outcome after SDC for malignant cerebellar infarction in a large and homogeneous population of patients. In our series SDC was safe with no fatal procedural complications. However, infarct-related mortality was substantial (28%) within the first 6 months after the stroke and may have been affected by inclusion of 15 patients with recanalized basilar artery occlusion. Despite this, mortality in our study was comparable to previous studies with up to 20 patients, in which early mortality reached 0% to 50%.10,14,15

The majority of patients (70%) were referred from community hospitals before SDC, many of them with the clear prospective to receive SDC in the case of clinical deterioration. This referral pattern may have influenced the rate of patients treated by SDC with respect to all admitted patients with acute cerebellar infarction. However, the observed rate of 18% in our study corresponds well to an estimated proportion of 11% to 25% of cerebellar infarctions in which edema may lead to critical space-occupation.12

In our survivors, functional long-term outcome was acceptable. Only very few patients lived with persisting major disability. Equally important, quality of life did not seem to be massively impaired. As expected, it was lower than in healthy controls,23 but differences were moderate. Compared to historical populations of nonselected stroke patients22 and stroke patients after hemicraniectomy for hemispheric infarction,22,24 our patients scored quite similar in 6 of the 8 tested domains of the SF-36 but scored substantially better in physical and physical role functioning.

Not surprisingly, the presence of brain stem infarction on neuroradiological imaging was clearly associated with poor outcome in our patients. The issue of whether patients with neuroradiologically confirmed brain stem infarction should be treated by life-saving SDC remains difficult. Our data and data from the literature12 do not provide sufficient evidence to suggest an optimal treatment strategy in this setting. A practical approach might be to make an individual therapeutic decision based on the extension of the brain stem infarction, the expected associated functional impairment, and the patient’s declared or presumptive will.

The best surgical approach for malignant cerebellar infarction is a matter of debate.1,13–15,28 In our population, the standardized surgical protocol included extensive bilateral SDC and evacuation of necrotic tissue with the aim to create maximum space for progressing edema. Because SDC was the predefined mandatory surgical approach, our study cannot provide evidence on any superiority of SDC or insertion of an EVD as the primary surgical procedure. Future prospective trials may address this question.

If SDC is performed, additional evacuation of necrotic tissue may have an influence on outcome.13,15 This may be explained by the increased gain of decompression volume for vital cerebellar tissue as well as the reduced induction of cytotoxic edema by less necrotic tissue. Our data do not provide sufficient evidence that evacuation of necrotic tissue is of real benefit. It would be very interesting to investigate its effect in a prospective trial.
The state of consciousness before surgery did not affect outcome in our patients. Other studies have provided conflicting results. While some authors found an association between reduced consciousness and poor outcome, others did not. In light of these and our findings the decision for SDC should not be rejected based on a poor preoperative state of consciousness alone.

In malignant middle cerebral artery infarction age has been shown to be an important predictor for poor outcome after hemicraniectomy. In malignant cerebellar infarction, age may be equally relevant. Hornig et al found an association of age greater than 60 years with poor outcome. Our study could not confirm this finding. In the absence of clear evidence it may not be justified to generally withhold SDC in older patients.

In all of our patients the territory of the PICA was affected. This confirms a previous observation that malignant swelling in isolated AICA and SCA infarction is uncommon. It also demonstrates that patients with PICA infarction are at special risk for life-threatening edema. Outcome was similar in patients with unilateral and bilateral infarction. Therefore, bilateral infarct extension alone should not be considered an exclusion criterion for SDC.

The time interval from symptom onset to SDC did not affect outcome in our patients. This finding may argue against preventive surgery before clinical deterioration. In the absence of prospective controlled trials, it seems reasonable to consider prompt SDC at the time when first signs of secondary clinical deterioration occur. This requires a setting in which continuous clinical observation and permanent availability of neuroradiological and neurosurgical services are warranted. However, many patients are not primarily admitted to specialized stroke centers. Therefore, it remains a challenge of cooperative stroke care to initiate timely referral of initially oligosymptomatic patients to specialized stroke centers.

From an evidence-based point of view, retrospective analyses like the one presented cannot reliably define the exact value of SDC in malignant cerebellar infarction. Only randomized controlled trials comparing surgical and conservative treatment could answer this question beyond all doubt. However, these trials will probably never be performed because depriving affected patients of life-saving SDC may be considered unethical by many (including the authors of this article). However, multicenter randomized controlled trials will be helpful and feasible to define the optimal timing of surgery (before versus after clinical deterioration) or the optimal surgical procedure (e.g., EVD versus SDC as the primary treatment or SDC versus SDC plus infarct evacuation).

Summary

SDC is a safe procedure in patients with malignant cerebellar infarction. Although early infarct- but not procedure-related mortality is substantial, long-term outcome in most survivors seems to be acceptable, especially in the absence of brain stem infarction. Randomized controlled trials will be necessary to define the optimal timing of surgery and the optimal surgical procedure.

Disclosures

None.

References

Long-Term Outcome After Suboccipital Decompressive Craniectomy for Malignant Cerebellar Infarction
Thomas Pfefferkorn, Ursula Eppinger, Jennifer Linn, Tobias Birnbaum, Jürgen Herzog, Andreas Straube, Martin Dichgans and Stefan Grau

Stroke. 2009;40:3045-3050; originally published online July 2, 2009; doi: 10.1161/STROKEAHA.109.550871

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/40/9/3045

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2013/10/06/STROKEAHA.109.550871.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/
Отдаленные исходы после проведения декомпрессионной субокципитальной краниэктомии при злокачественном течении инфаркта мозжечка

Departments of Neurology, Neuroradiology, and Neurosurgery, Klinikum Grosshadern, University of Munich, Germany; and Neurologische Klinik, Bad Aibling, Germany.

Предпосылки и цель исследования. Декомпрессионная субокципитальная краниэктомия (ДСК) при злокачественном течении инфаркта мозжечка проводится по жизненным показаниям. Однако систематического изучения отдаленных исходов после проведения этого вмешательства не проводилось. Методы. В одноцентровом ретроспективном исследовании мы проанализировали летальность, отдаленные функциональные исходы и качество жизни всех пациентов, которым выполняли ДСК по поводу злокачественного течения инфаркта мозжечка в период с 1995 по 2006 г. Результаты. Для анализа мы использовали данные 57 пациентов, которым выполняли двустороннюю ДСК. Наружный вентрикулярный дренаж устанавливали 82% пациентов; удаление некротических тканей выполняли 56% пациентов. Осложнений вмешательства, угрожающих жизни, не наблюдали. Пять пациентов были утеряны при последующих наблюдениях. Средняя продолжительность периода наблюдения за оставшимися 52 пациентами составила 4,7 года (от 1 года до 11 лет). В течение 6 месяцев после вмешательства умерли 16 (28%) из 57 пациентов. За весь период наблюдения умер 21 (40%) из 52 пациентов, а у 4 (8%) пациентов развилась глубокая инвалидизация (оценка по модифицированной шкале Рэнкина [МШР] 4 или 5 баллов). В 21 (40%) случае пациенты были функционально независимы (оценка по МШР от 0 до 2 баллов). Наличие дополнительного инфаркта в стволе головного мозга коррелировало с развитием неблагоприятного исхода (оценка по МШР более 4 баллов; отношение рисков [ОР]=9,1; р=0,001). Качество жизни пациентов, выживших после краниэктомии, было несколько ниже, чем здоровых участников контрольной группы. Выводы. ДСК у пациентов со злокачественным течением инфаркта мозжечка является безопасным вмешательством. Уровень летальности в раннем послеоперационном периоде достаточно высок, однако это связано с наличием самого инфаркта, а не с проведением оперативного вмешательства. Отдаленные исходы после краниэктомии благоприятны, особенно при отсутствии инфаркта ствола головного мозга.

Ключевые слова: инфаркт мозжечка (cerebellar infarction), краниэктомия (craniectomy), исход (outcome)

Первым симптомом инфаркта мозжечка часто являются атаксия и глазодвигательные нарушения. Однако в течение нескольких дней у некоторых пациентов происходит значительное ухудшение состояния вследствие отека головного мозга с последующим сдавлением ствола головного мозга, трансформинальным или транстенториальным вклинениями мозга, а также развитием окклюзионной гидроцефалии [1–6]. Несмотря на отсутствие результатов проспективных рандомизированных исследований, в руководствах American Stroke Association [7] и European Stroke Organization [8] декомпрессионная субокципитальная краниэктомия (ДСК) и установка наружного вентрикулярного дренажа (НВД) в настоящее время рекомендованы в качестве предпочтительного метода лечения инфаркта мозжечка.

Согласно результатам некоторых исследований, проведение ДСК позволяет снизить уровень летальности среди пациентов со злокачественным течением инфаркта мозжечка [2, 3, 6, 9–17]. Однако об отдаленных исходах краниэктомии у выживших пациентов практически ничего неизвестно.

В данном одноцентровом ретроспективном исследовании мы оценивали летальность, отдаленные функциональные исходы и качество жизни и прогностические факторы развития неблагоприятных исходов у пациентов со злокачественно протекающим инфарктом мозжечка после проведения стандартной ДСК.

ПАЦИЕНТЫ И МЕТОДЫ

ОТБОР УЧАСТНИКОВ ИССЛЕДОВАНИЯ

В исследование включили всех пациентов, которым выполняли ДСК в нашей клинике в период с 1995 по 2006 г. Отбор пациентов проводили с использованием электронной базы данных, в которой проспективно собирали основные сведения обо всех пациентах с инсультом, поступавших с 1995 г.

ОПЕРАТИВНОЕ ВМЕШАТЕЛЬСТВО И МЕДИКАМЕНТОЗНОЕ ЛЕЧЕНИЕ

Всем пациентам выполняли ДСК, согласно стандартному протоколу хирургического вмешательства, утвержденному в 1995 г. Согласно этому протоколу, выполнение ДСК было предпочтительным методом лечения пациентов с клиническим ухудшением и рентгенологическими признаками острого обширного инфаркта мозжечка с явлениями сдавления ствола головного мозга, опасностью развития трансформинального или транстенториального вклинений или окклюзионной гидроцефалии. В соответствии с протоколом, целью проведения оперативного вмешательства было увеличение объема черепной коробки. Таким образом, протокол включал проведение расширенной краниэктомии до контралатеральной стороны для обеспечения возможности латерального смещения мозжечка и удаления некротических
ДЛЯТЕЛЬНОЕ ПОСЛЕДУЮЩЕЕ НАБЛЮДЕНИЕ
АНАЛИЗ РЕЗУЛЬТАТОВ НЕЙРОРАДИОЛОГИЧЕСКИХ ТКАНЕЙ. За отчетный период протокол не претерпел никаких изменений, и в нем были утверждены следующие хирургические вмешательства: 1) расширенная двусторонняя ДСК с пластикой твердой мозговой оболочки и возможной резекцией задней дуги атланта, 2) профилактическая установка НВД при развитии гидроцефалии; 3) удаление некротических масс.
Медикаментозное лечение, как правило, проводилось в соответствии с немецкими и европейскими руководствами по оказанию помощи при остром инсульте, актуальными на момент поступления пациента в стационар. При подозрении на развитие злокачественного отека головного мозга и потенциальной необходимости выполнения ДСК от проведения антиагрегантной терапии воздерживались; в этом случае пациент получал только гепарин в низких дозах. Препараты с осмотическим действием, такие как маннитол, обычно не использовались. Только в случае развития остroго вклинения маннитол назначали в качестве поддерживающей терапии до выполнения экстренной ДСК.
СБОР ДАННЫХ ИЗ ИСТОРИЙ БОЛЕЗНЕЙ
Из историй болезни мы получили следующие данные: возраст, пол, наличие сопутствующих заболеваний, наличие факторов риска развития сосудистых заболеваний, клинические проявления, течение заболевания, этиология и объем очага инфаркта мозга, порядок поступления в стационар, время от начала заболевания до проведения хирургического вмешательства, особенности проведения хирургического вмешательства, периперационные осложнения, ближайшие исходы, в т.ч. летальный исход в стационаре. Для определения этиологии инфаркта мозга использовали методы визуализации экстратропических сосудов (допплерографию, дуплексное сканирование, КТ-ангиографию, МР-ангиографию), холтеровское мониторирование ЭКГ, трансторакальную и чреспищеводную эхокардиографию. Наличие сопутствующих заболеваний оценивали по индексу Чарльсона – утвержденному критерию предсуществующей коморбидности [18].
АНАЛИЗ РЕЗУЛЬТАТОВ НЕЙРОРАДИОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ
Результаты всех нейroradiологических исследований изучал опытный нейрорадиолог (J. Linn). Особое внимание он уделял любой исходной патологии артерий и определению точного объема артерии. Диагноз инфаркта подтверждался на основании данных МРТ или явных признаков инфаркта по результатам КТ.
ДЛИТЕЛЬНОЕ ПОСЛЕДУЮЩЕЕ НАБЛЮДЕНИЕ
Оценку отдаленных исходов после проведения оперативного вмешательства провели в 2007 г. С пациентами связывались по телефону, а их клиническое состояние оценивали с помощью структурированного интервью и по модифицированной шкале Рэнкина (МШР) [19]. Кроме интервью по телефону пациентам предложили ответить на вопросы анкеты SF-36 (36-Item Short-Form Health Survey), отправленной по почте [20]. Анкету SF-36 часто используют для оценки качества жизни в зависимости от состояния здоровья; она одобрена для проведения опроса пациентов, перенесших инсульт [21, 22]. Анкета позволяет оценить 8 основных показателей физического, эмоционального и психического функционирования. Полученные результаты мы сравнивали с результатами анкетирования, проведенного среди здоровой популяции коренных жителей Германии [23], не специально отобранных пациентов с инсультом [22] и пациентов, которым была выполнена гемикраниэкто-мия по поводу злокачественно протекающего инфаркта в бассейне средней мозговой артерии [22, 24]. На последнем этапе пациенты должны были ответить “Да” или “Нет” на следующий вопрос: “Как вы считаете, правильно ли врач выбрал лечебную тактику, выполнив вам данное оперативное вмешательство?”
ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИСХОД
С целью выявления пациентов, которые могли не получить преимуществ от проведения ДСК, в качестве критерия неблагоприятного исхода мы выбрали развитие стойких функциональных нарушений или летального исхода в период наблюдения (оценка по МШР более 4 баллов). Авторы последних исследований, посвященных изучению хирургических методов лечения инсульта, а именно изучению эффективности проведения гемикраниэктомии при злокачественно протекающем полушарном инфаркте, использовали аналогичное разделение пациентов на 2 группы: с благоприятным (оценка по МШР менее 3 баллов) и неблагоприятным исходом (оценка по МШР более 4 баллов) [25–27]. К факторам риска развития неблагоприятного исхода отнесли: возраст старше 60 лет, индекс коморбидности Чарльсона более 3 баллов, оценку по шкале комы Глазго (ШКГ) перед оперативным вмешательством менее 8 баллов, время до проведения вмешательства более 3 дней, удаление некротических масс, двусторонний инфаркт мозжечка, нейroradiологические признаки наличия инфаркта ствола головного мозга.
СТАТИСТИЧЕСКИЙ АНАЛИЗ
Для проведения статистического анализа мы использовали программное обеспечение SPSS 13.0. Все показатели представлены в виде среднего значения ± стандартное отклонение (СО). Учитывая небольшое число пациентов и исходов, мы не проводили анализ логистической регрессии по вероятным предикторам развития неблагоприятного исхода. Вместо этого мы выполнили однофакторный анализ с использованием точного критерия Фишера.
РЕЗУЛЬТАТЫ
ХАРАКТЕРИСТИКИ ПАЦИЕНТОВ
За отчетный период в наш центр поступили 322 пациента с острым инфарктом мозжечка. ДСК выполнили 57 (18%) пациентам. Средний возраст пациентов составил 59,2 года. Большинство пациентов (70%) были направ-
лены в наш центр для проведения хирургического вмешательства из ближайших клиник общего профиля (таблица 1). Наличие существенной сопутствующей патологии выявили лишь у 18% пациентов (индекс коморбидности Чарльсона более 3 баллов), тогда как у большинства пациентов имелся один (или более) фактор риска сердечно-сосудистых заболеваний, таких как артериальная гипертензия, сахарный диабет или гиперхолестеринемия (таблица 1). До развития инфаркта мозжечка практически все пациенты были функционально независими (таблица 1). У двух пациентов с оценкой по МШР более 3 баллов причиной функциональной зависимости могли быть хирургические вмешательства, проведенные за два дня до развития инфаркта (гистерэктомия и резекция сигмовидной кишки соответственно).

КЛИНИЧЕСКИЕ ПРОЯВЛЕНИЯ И ТЕЧЕНИЕ ЗАБОЛЕВАНИЯ ДО ПРОВЕДЕНИЯ ОПЕРАТИВНОГО ВМЕШАТЕЛЬСТВА

Чаще всего первыми симптомами развития инфаркта мозжечка были головокружение, тошнота и головная боль. При поступлении в стационар наиболее часто выявляли такие неврологические симптомы, как атаксия, глазодвигательные нарушения и дизартрия/дисфагия (таблица 1). В историях болезней не было подробного описания течения заболевания до проведения хирургического вмешательства. Единственной информацией, которой можно было воспользоваться, была оценка тяжести нарушения сознания по ШКГ. В соответствии с ней у большинства пациентов (86%) произошло снижение уровня сознания в период между поступлением в стационар и проведением оперативного вмешательства со средним понижением оценки по ШКГ с 12,6±3,9 до 9,7±4,0 баллов.

ЭТИОЛОГИЯ ИНФАРКТА И РЕЗУЛЬТАТЫ НЕЙРОРАДИОЛОГИЧЕСКИХ МЕТОДОВ ИССЛЕДОВАНИЯ

Чаще всего причиной инфаркта мозжечка были заболевания крупных сосудов, а также кардиогенная эмболия и расслоение стенки позвоночной артерии (таблица 1). Всем пациентам проводили не менее одного КТ-сканирования; 33 пациентам для уточнения объема очага инфаркта помимо КТ выполнили МРТ. У 37% пациентов был выявлен двусторонний инфаркт мозжечка (таблица 1). У всех пациентов патологический очаг был расположен в бассейне задней нижней мозжечковой артерии (ЗНМА). Инфаркт ствола головного мозга обнаружили в 51% случаев (таблица 1). У 15 (26%) пациентов с окклюзий основной артерией, обнаруженной при нейrorадиологическом исследовании, до проведения ДСК добились ее реканализации.

ОПЕРАТИВНОЕ ВМЕШАТЕЛЬСТВО

Решение о проведении ДСК принимали только при ухудшении состояния пациента и по результатам нейrorадиологических методов исследования при наличии признаков сдавления ствола головно-

<table>
<thead>
<tr>
<th>Таблица 1. Характеристики пациентов</th>
</tr>
</thead>
<tbody>
<tr>
<td>Параметры</td>
</tr>
<tr>
<td>Общие сведения</td>
</tr>
<tr>
<td>Возраст</td>
</tr>
<tr>
<td>(среднее значение ± стандартное отклонение), годы</td>
</tr>
<tr>
<td>Число мужчин</td>
</tr>
<tr>
<td>Перевод из больниц общего профиля</td>
</tr>
<tr>
<td>Преморбидное состояние</td>
</tr>
<tr>
<td>Индекс Чарльсона ≥ 3 баллов*</td>
</tr>
<tr>
<td>Оценка по МШР:</td>
</tr>
<tr>
<td>≥ 1 балла</td>
</tr>
<tr>
<td>≥ 2 баллов</td>
</tr>
<tr>
<td>≥ 3 баллов</td>
</tr>
<tr>
<td>Факторы риска сердечно-сосудистых заболеваний</td>
</tr>
<tr>
<td>Артериальная гипертензия</td>
</tr>
<tr>
<td>Сахарный диабет</td>
</tr>
<tr>
<td>Гиперхолестеринемия</td>
</tr>
<tr>
<td>Активное курение</td>
</tr>
<tr>
<td>Первые симптомы инфаркта мозжечка</td>
</tr>
<tr>
<td>Атаксия</td>
</tr>
<tr>
<td>Глазодвигательные нарушения</td>
</tr>
<tr>
<td>Дизартрия/дисфагия</td>
</tr>
<tr>
<td>Головокружение</td>
</tr>
<tr>
<td>Тошнота</td>
</tr>
<tr>
<td>Головная боль</td>
</tr>
<tr>
<td>Мышечная слабость</td>
</tr>
<tr>
<td>Угнетение сознания (оценка по ШКГ ≤ 12 баллов)</td>
</tr>
<tr>
<td>Кома (оценка по ШКГ ≤ 8 баллов)</td>
</tr>
<tr>
<td>Локализация инфаркта</td>
</tr>
<tr>
<td>Мозжечок</td>
</tr>
<tr>
<td>- односторонний</td>
</tr>
<tr>
<td>- двусторонний</td>
</tr>
<tr>
<td>- бассейн ЗНМА</td>
</tr>
<tr>
<td>- бассейн ВМА</td>
</tr>
<tr>
<td>- бассейн ПНМА</td>
</tr>
<tr>
<td>Ствол головного мозга</td>
</tr>
<tr>
<td>Бассейн ЗМА</td>
</tr>
<tr>
<td>Этiology инфаркта</td>
</tr>
<tr>
<td>Поражение крупных сосудов</td>
</tr>
<tr>
<td>Кардиогенная эмболия</td>
</tr>
<tr>
<td>Расслоение стенки позвоночной артерии</td>
</tr>
<tr>
<td>Другие или неустановленные причины</td>
</tr>
<tr>
<td>Подтвержденные окклюзии/стеноз артерии</td>
</tr>
<tr>
<td>Окклюзия основной артерии</td>
</tr>
<tr>
<td>Окклюзия позвоночной артерии</td>
</tr>
<tr>
<td>Стеноз в вертебрально-базилярной системе</td>
</tr>
<tr>
<td>Объем хирургического вмешательства</td>
</tr>
<tr>
<td>ДСК</td>
</tr>
<tr>
<td>НВД</td>
</tr>
<tr>
<td>Удаление некротических масс</td>
</tr>
</tbody>
</table>

Примечание. Все показатели в таблице представлены в виде отношения числа пациентов, отвечающих указанному параметру, к общему числу всех пациентов, данные которых были использованы для анализа, и в виде процентов (%). * – Индекс Чарльсона более 3 баллов указывает на наличие существенной сопутствующей патологии [18]. ЗНМА — задняя нижняя мозжечковая артерия; ВМА — верхняя мозжечковая артерия; ПНМА — передняя нижняя мозжечковая артерия; ЗМА — задняя мозговая артерия; ДСК — декомпрессионная субокципитальная хранеэктомия; НВД — наружный вентрикулярный дренаж.
го мозга, угрозе трансфораминального/транстен-ториального вклинения или развития окклюзионной гидроцефалии. Всем пациентам проводили двустороннюю ДСК. Некротические массы удалили у 56% пациентов; НВД установили 82% пациентов. В период от нескольких дней до нескольких недель дренаж удалили всем пациентам (98%) за исключением одного. Этому пациенту дренаж со временем заменили постоянным вентрикулоперитонеальным шунтом. Среднее время от момента появления первых симптомов инфаркта мозжечка до выполнения ДСК составляло 2,1±1,7 дней (от 0 до 9 дней). Не угрожающие жизни осложнения оперативного вмешательства развивались у 10 (18%) пациентов, в т.ч. ликворея (n=5), менингит (n=3) и вентрикулит (n=3).

У 6 пациентов лечение заключалось только в установке НВД. В одном случае это было связано с тем, что пациенту не удалось придать нужного для операции положения по причине тяжелой сопутствующей патологии. В других случаях решение об объеме оперативного вмешательства принимал хирург индивидуально, однако по результатам ретроспективного анализа данных историй болезни аргументы выбора тактики лечения установить не удалось. Поскольку стандартный протокол хирургического вмешательства был нарушен, а изолированную установку НВД выполнили лишь нескольким пациентам, мы не включили данные этих пациентов в дальнейший анализ.

РАННИЙ ПОСЛЕОПЕРАЦИОННЫЙ ПЕРИОД И ЛЕТАЛЬНОСТЬ

Все пациенты находились на лечении и под наблюдением в отделении нейроанаботчики или специализированном отделении по лечению инсульта. Средняя продолжительность пребывания пациентов в стационаре составила 17,3±10,8 дней (от 3 до 42 дней). За этот период умерли 12 (21%) пациентов, летальность во всех этих случаях была связана с инфарктом мозга: 9 пациентов умерли в результате общирного инфаркта ствола головного мозга, 3 пациента — в результате прогрессирующего сдавления ствола головного мозга, несмотря на проведение ДСК. В нейрохирургическом отделении были направлены 45 (79%) пациентов, выживших после проведения вмешательства. Через 6 месяцев от начала заболевания зафиксированы 16 (28%) летальных исходов (рис. 1).

ОТДАЛЕННЫЕ ИСХОДЫ

В течение последующего наблюдения средней продолжительностью 4,7±2,9 года (от 1 до 11 лет) умер 21 (40%) из 52 пациентов. Ни один из этих поздних летальных исходов (через 6 месяцев после проведения ДСК) не был связан с исходным инфарктом мозжечка. Пять пациентов были утеряны из последующего наблюдения, всего выжило 31 пациент. У 4 из этих пациентов были выраженные стойкие функциональные нарушения (оценка по МШР от 4 до 5 баллов), у 13 (25%) пациентов оценка по МШР составляла от 0 до 1 балла, у 27 (52%) — от 0 до 2 баллов. Более подробные данные о функциональных исходах представлены на рис. 2.

На анкеты SF-36 ответили 26 человек. Число баллов по каждому отдельному пункту анкеты у пациентов основной группы было несколько ниже, чем в контрольной группе (рис. 3), что подтвердило ожидаемое умеренное ухудшение качества жизни. При сравнении результатов анкетирования пациентов с инсультом, принимавших участие в исследовании International Stroke Trial [22], и пациентов после гемикраниэктомии по поводу злокачественно протекающего инфаркта в бассейне средней мозговой артерии [24] мы обнаружили, что у участников нашего исследования оценки по 6 из 8 пунктов были идентичными, но по двум пунктам анкеты — существенно выше: физическое функционирование (55 vs 30 vs 31) и ролевое функционирование, обусловленное физическим состоянием (44 vs 20 vs 6). На вопрос о том, считают ли пациенты, что лечебная тактика была выбрана правильно, 26 из 27 (98%) пациентов дали утвердительный ответ.

ФАКТОРЫ, ВЛИЯЮЩИЕ НА РАЗВИТИЕ НЕБЛАГОПРИЯТНОГО ИСХОДА

Результаты однофакторного анализа свидетельствуют о том, что фактором развития неблагоприятного исхода (оценка по МШР более 4 баллов) в период последующих наблюдений было только
Рисунок 2. Оценки по МШР в период наблюдения (в среднем, 4,7 года) у всех пациентов (n=52), в подгруппах без инфаркта ствола головного мозга (n=26) и при наличии инфаркта ствола головного мозга (n=26), представленные в абсолютных числах (n) и процентах (%)

Рисунок 3. Сравнительный анализ результатов анкетирования пациентов по SF-36 и здоровых жителей Германии [23] после внесения поправок по возрасту и полу. С помощью анкетирования провели оценку основных 8 показателей качества жизни: физическое функционирование (ФФ), ролевое функционирование, обусловленное физическим состоянием (РФ), интенсивность боли (ИБ), общее состояние здоровья (ОСЗ), жизненная активность (ЖА), социальное функционирование (СФ), ролевое функционирование, обусловленное эмоциональным состоянием (РФЭС) и психическое здоровье (ПЗ). Для всех показателей более высокая оценка указывает на более высокий уровень качества жизни. Вертикальными палочками погрешностей указаны 95% доверительные интервалы (сведения для пациентов контрольной группы отсутствуют в связи с ограниченным доступом к исходным данным).
В данной статье мы представили результаты анализа отдаленных исходов после проведения ДСК по поводу злокачественно протекающего инфаркта мозжечка в большой и однородной группе пациентов. Согласно нашим данным, ДСК является безопасным оперативным вмешательством без риска развития состояний, угрожающих жизни. Однако уровень летальности, связанной с инфарктом мозжечка, в течение первых 6 месяцев после инсульта был существенным (28%) и мог быть связан с включением в анализ данных 15 пациентов, которым проводили реканализацию окклюзированной основной артерии. Несмотря на это, летальность в нашем исследовании сопоставима с результатами ранее проведенных исследований с участием не более 20 пациентов, в которых летальность в раннем послеоперационном периоде составляла от 0 до 50% [10, 14, 15].

Большинство пациентов (70%) поступили в наш центр по направлению из других клиник общего профиля, многим из них в случае клинического ухудшения планировали выполнить ДСК. Эта особенность направления в стационар могла повлиять на долю пациентов, которым была выполнена ДСК, относительно всех пациентов, поступивших с инфарктом мозжечка. Однако в нашем исследовании она составила 18%, что четко соответствует установленной доле инфарктов мозжечка (от 11 до 25%), при которых отек головного мозга может быть критическим [12].

Отдаленные функциональные исходы у выживших участников нашего исследования в основном были благоприятными. Лишь у некоторых пациентов возниклись стойкие функциональные нарушения. Также важно отметить, что качество жизни пациентов значительно не изменилось. Как и ожидалось, оно было ниже, чем у здоровых пациентов контрольной группы [23], но различия были умеренными. При сравнении с результатами анкетирования коренных популяций, не специально отобранных пациентов с инсультом [22] и пациентов после гемикраниэктомии по поводу полушарного инсульта [22, 24] мы обнаружили, что у участников нашего исследования были похожие оценки по 6 из 8 показателей, оцениваемых в анкете SF-36. Однако оценки физического функционирования и ролевого функционирования, обусловленного физическим состоянием, были значительно выше.

Нет ничего удивительного в том, что наличие инфарктов головного мозга, подтвержденное нейрорадиологическими методами исследования, для участников нашего исследования было предиктором развития неблагоприятного исхода. Вопрос о необходимости выполнения в таких случаях ДСК по жизненным показаниям остается открытым. Данные нашего исследования и данные литератур [12] не предоставили достаточных доказательств в поддержку оптимальной тактики лечения в этой клинической ситуации. Таким образом, правильное решение можно принять только в случае индивидуального подхода к каждому пациенту с учетом таких факторов, как объем очага инфаркта ствола мозга, ожидаемые функциональные нарушения и объявленная или предполагаемая воля пациента.

Оптимальный объем оперативного вмешательства при злокачественно протекающем инфаркте мозжечка до сих пор является предметом для обсуждений [1, 13—15, 28]. В нашем исследовании в стандартный протокол хирургического вмешательства включали расширенную двустороннюю ДСК и удаление некротических масс с целью увеличения объема черепа при прогрессирующем отеке головного мозга. Поскольку в нашем исследовании ДСК была предопределена для первичных/основных хирургических вмешательств, мы не смогли представить доказательства преимущества выполнения ДСК или установки НВД в качестве первичных/основных хирургических вмешательств. Возможно, эти проблемы удалось решить при проведении последующих проспективных исследований.

На исход после проведения ДСК может повлиять дополнительное удаление некротических масс [13, 15]. Это может быть связано с увеличением объема декомпрессии для жизнеобеспечной ткани мозжечка, а также снижением индукции цитотоксического отека при уменьшении количества некротической ткани. Однако данные проведенного исследования

Таблица 2. Однофакторный анализ вероятных предикторов развития неблагоприятного исхода (оценка по МШР ≥ 4 баллов)

<table>
<thead>
<tr>
<th>Предикторы</th>
<th>Отношение рисков</th>
<th>95% доверительные интервалы</th>
<th>Значение p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Инфаркт ствола головного мозга</td>
<td>9,05</td>
<td>от 2,57 до 31,84</td>
<td>0,001</td>
</tr>
<tr>
<td>Время от начала заболевания до проведения хирургического вмешательства ≥ 3 дней</td>
<td>1,91</td>
<td>от 0,59 до 6,17</td>
<td>0,38</td>
</tr>
<tr>
<td>Мужской пол</td>
<td>1,69</td>
<td>от 0,55 до 5,26</td>
<td>0,40</td>
</tr>
<tr>
<td>Индекс Чарльсона ≥ 3 баллов*</td>
<td>1,60</td>
<td>от 0,37 до 6,83</td>
<td>0,72</td>
</tr>
<tr>
<td>Возраст ≥ 60 лет</td>
<td>1,59</td>
<td>от 0,53 до 4,76</td>
<td>0,58</td>
</tr>
<tr>
<td>Оценка по ШКГ ≥ 8 баллов до операции</td>
<td>1,47</td>
<td>от 0,46 до 4,78</td>
<td>0,56</td>
</tr>
<tr>
<td>Двусторонний инфаркт мозжечка</td>
<td>1,13</td>
<td>от 0,36 до 3,53</td>
<td>1,00</td>
</tr>
<tr>
<td>Удаление некротических масс</td>
<td>0,36</td>
<td>от 0,11 до 1,21</td>
<td>0,14</td>
</tr>
</tbody>
</table>

Примечание. * — индекс Чарльсона более 3 баллов указывает на наличие существенной сопутствующей патологии [18].
не позволяют утверждать, что удаление некротических масс действительно дает хорошие результаты. Мы полагаем, что это будет интересным предметом для изучения в проспективном исследовании.

У наших пациентов степень угнетения сознания до проведения оперативного вмешательства не оказалась влияния на исход. В других исследованиях были получены противоречивые результаты: одни авторы обнаружили связь между снижением уровня бодрствования и неблагоприятным исходом [13], другие — нет [14]. Результаты этих исследований и наши собственные данные указывают на то, что угнетение сознания само по себе не является противопоказанием для проведения ДСК.

В ранее проведенном исследовании было продемонстрировано, что важным предиктором развития неблагоприятного исхода после гемикраниэктомии по поводу злокачественно протекающего инфаркта в бассейне средней мозговой артерии является возраст [29]. Возможно, при злокачественно протекающем инфаркте мозжечка возраст также имеет значение. С.Р. Hornig и соавт. обнаружили взаимосвязь между снижением уровня бодрствования и неблагоприятным исходом после гемикраниэктомии у пациентов со злокачественно протекающим инфарктом мозжечка [12]. В противоположность авторам обнаружили, что инфаркт мозжечка является безопасным оперативным вмешательством у пациентов со злокачественно протекающим инфарктом мозжечка [13]. Однако многие авторы могут посчитать неэтичным (в т.ч. авторы данной статьи). Однако многоцентровые рандомизированные контролируемые испытания могли бы помочь определить оптимальный срок выполнения операции (например, до или после клинического ухудшения) или оптимальный объем оперативного вмешательства (установка НВГ vs выполнение ДСК в качестве основного лечения; или ДСК vs ДСК + удаление некротических масс).

С точки зрения доказательной медицины, с помощью подобных ретроспективных анализов невозможно определить точное значение проведения ДСК при злокачественно протекающем инфаркте мозжечка. Только после проведения рандомизированных контролируемых испытаний по сравнению эффективности хирургических и медикаментозных методов лечения можно будет уверенно ответить на этот вопрос. Хотя вполне вероятно, что проведение ДСК пациентам по жизненным показаниям многие авторы могут посчитать незыблемым (в т.ч. авторы данной статьи). Однако многоцентровые рандомизированные контролируемые испытания могли бы помочь определить оптимальный срок выполнения операции (например, до или после клинического ухудшения) или оптимальный объем оперативного вмешательства (установка НВГ vs выполнение ДСК в качестве основного лечения; или ДСК vs ДСК + удаление некротических масс).

РЕЗЮМЕ

Декомпрессионная субокципитальная краниэктомия у пациентов со злокачественно протекающим инфарктом мозжечка является безопасным оперативным вмешательством. Хотя уровень летальности в раннем послеоперационном периоде являлся существенным, он связан с наличием самого инфаркта, а не с периоперационными осложнениями, и отдаленные исходы у большинства пациентов были достаточно благоприятными, особенно при отсутствии инфаркта ствола головного мозга. Для определения оптимальных сроков и объемов оперативного вмешательства необходимо провести рандомизированные контролируемые испытания.

ЛИТЕРАТУРА

Декомпрессионная краннотомия задней черепной ямки при инфаркте мозжечка является жизнеспасающей операцией и применяется при развитии компрессии ствола мозга и/или окклюзионной гидроцефалии. Критерии отбора больных для операции зависят от тяжести состояния пациента, объема инфаркта, степени компрессии ствола мозга и симптомами. Само вмешательство, как правило, не сопровождается выраженной гемодинамической нестабильностью.

В проведенной авторами ретроспективной работе по 57 больным показано, что среди выживших пациентов течение заболевания было благоприятным, половина пациентов выздоровели или имели бодрствования до глубокой комы. Другие исследователи настаивают на проведении операции у всех пациентов, независимо от тяжести состояния, если гемодинамические показатели позволяют произвести операцию. Обе точки зрения имеют право на существование и иллюстрируют тот факт, что одинаковые рекомендации по данному виду лечения пока отсутствуют. Объем операции, по данным различных исследований, может разниться в зависимости от тяжести состояния, объема инфаркта, степени компрессии ствола мозга и симптомами.

Kommentariи

Декомпрессионная краннотомия задней черепной ямки при инфаркте мозжечка является жизнеспасающей операцией и применяется при развитии компрессии ствола мозга и/или окклюзионной гидроцефалии. Критерии отбора больных для операции зависят от тяжести состояния пациента, объема инфаркта, степени компрессии ствола, наличия первичной ишемии ствола и гидроцефалии. Само вмешательство, как правило, не сопровождается выраженной гемодинамической нестабильностью.

В проведенной авторами ретроспективной работе по 57 больным показано, что среди выживших пациентов течение заболевания было благоприятным, половина пациентов выздоровели или имели бодрствования до глубокой комы. Другие исследователи настаивают на проведении операции у всех пациентов, независимо от тяжести состояния, если гемодинамические показатели позволяют произвести операцию. Обе точки зрения имеют право на существование и иллюстрируют тот факт, что одинаковые рекомендации по данному виду лечения пока отсутствуют. Объем операции, по данным различных исследований, может разниться в зависимости от тяжести состояния, объема инфаркта, степени компрессии ствола мозга и симптомами.
умеренный неврологический дефицит. В отдаленном периоде заболевания смерть больных не была связана с перенесенной компрессией ствола. Наиболее тяжелые неврологические нарушения и летальные исходы наблюдали у больных с ишемией ствола, как первичной, так и сопровождавшейся компрессией ствола. В этой связи следует отметить, что при уже развитшейся компрессии ствола трудно дифференцировать, вследствие чего возникло его поражение. Это диктует необходимость проведения декомпрессивных операций, которые часто не приводят к улучшению состояния больных. Вероятно, ранее выделение группы больных с первичным инфарктом ствола еще до развития дислокации мозжечка позволило отказаться от проведения бесполезных операций.

Можно полностью согласиться с авторами, исключившими из исследования пациентов, которым проводили только дренирование желудочков. При наличии очага, вызывающего дислокацию мозжечка и гидроцефалию, дренирование желудочков часто сопровождается восходящей мозжечково-тенториальной дислокацией и приводит к усугублению дислокации. Большинство авторов, занимающихся проблемой хирургии инсульта мозжечка, независимо от его характера, придерживаются мнения, согласно которому операцией выбора при угрожающей жизни компрессии ствола, подтвержденной данными нейровизуализации, является декомпрессивная краниэктомия, возможно, с резекцией дуги атланта. Дренирование желудочков может явиться вспомогательной манипуляцией при условии устранения прямой компрессии и для контроля внутричерепного давления. Последний метод мониторинга авторами не был использован, хотя известно, что прогноз выживаемости и восстановления функций, а также эффективность интенсивной терапии при инсультах различного генеза часто базируется на показателях внутричерепного давления в остром периоде заболевания. Авторы настороженно относятся к использованию осмотических средств, за исключением предоперационного периода. Возможно, при наличии данных о показателях внутричерепенного давления этот подход был бы пересмотрен, а время и целесообразность проведения хирургического лечения выбирались с учетом показателей внутричерепенного давления. Следует отметить, что в литературе имеется совсем небольшое количество сообщений о месте и роли мониторирования внутричерепенного давления в определении тактики ведения больных ишемическим инсультом. В основном эти сообщения касаются пациентов с инфарктами больших полушарий мозга. Большинство исследователей при выборе хирургического лечения (декомпрессивной краниэктомии) основываются на объеме инфаркта, уровне бодрствования и степени дислокации. В данном исследовании даже эти параметры представлены в не вполне отчетливо. Было бы интересно знать зависимость результатов хирургического лечения (в т. ч. и отдаленных) от конкретного объема зоны ишемии, степени и характера дислокации мозжечка. Но, так или иначе, у больных со злокачественным течением инфаркта мозжечка, метод декомпрессивной краниэктомии следует рассматривать не только как одно из средств спасения пациента, но и как метод улучшения функционального исхода. Определение конкретных показаний и объем вмешательства (только мониторинг внутричерепного давления, краниэктомия, краниэктомия + резекция мозжечка) можно обсуждать в дальнейших, более подробных и обширных исследованиях. В условиях, когда не каждый пациент по тем или иным причинам может быть переведен для операции в специализированное нейрохирургическое отделение или при отказе от операции возможно появление контрольной группы больных, леченных только консервативно. Таким образом, кооперативные исследования позволяют уточнить роль декомпрессивной краниэктомии задней черепной ямки при лечении инфаркта мозжечка.

В.Г. Дашьян,
кафедра нейрохирургии
и нейрореанимации
ГОУ ВПО МГМСУ,
dоктор медицинский наук, профессор