Targets for Neural Repair Therapies After Stroke

S. Thomas Carmichael, MD, PhD

Abstract—Studies of neural repair after stroke have developed from a relatively small number of laboratories doing highly creative discovery science to a field in which reproducible evidence supports distinct pathways, processes, and molecules that promote recovery. This review focuses on some emerging targets for neural repair or recovery in stroke and on their limitations. (Stroke. 2010;41[suppl 1]:S124-S126.)

Key Words: adhesion molecules ■ astrocytes ■ basic science ■ matrix proteins ■ neuroregeneration ■ stroke recovery ■ trophic factors

Stroke induces a process of axonal sprouting in neighboring or connected cortical neurons that is associated with repair and recovery.1–3 Adult central nervous system (CNS) myelin or adult oligodendrocytes contain several inhibitors of axonal sprouting. These include the myelin-associated proteins Nogo, oligodendrocyte myelin glycoprotein, and myelin-associated glycoprotein (MAG).4,5 Nogo has emerged as a key axonal growth inhibitory protein. Pharmacological blockade of Nogo induces axonal sprouting and functional recovery in spinal cord injury4,6 and in stroke.6 Nogo inhibits axonal growth through Nogo receptor 1, a glycansyl-phosphoinoside linked protein, and through the recently described immunoglobulin receptor PIR1.7 NgR1 signals through the tumor necrosis factor family members TROY or p75 and Lingo-1.4,5 Several groups have developed soluble Nogo antagonists, often receptor decoys or peptide antagonists,8 or Lingo-1 antagonists.9 A Nogo blocking antibody is currently in clinical trials in spinal cord injury as delivered into the cerebrospinal fluid intrathecally.10 A small Nogo antagonist peptide has shown promise in preclinical stroke and spinal cord injury models.6,11 MAG and oligodendrocyte myelin glycoprotein clearly block axonal outgrowth in vitro, but their role in vivo is less clear. Genetic knockout of MAG does not promote axonal outgrowth in vivo.4,5 Oligodendrocyte myelin glycoprotein knockouts do not selectively support axonal sprouting in isolation.12 Thus, therapies directed toward these 2 molecules do not have strong preclinical support in vivo. Still, an anti-MAG antibody is in clinical trial,13 perhaps reflecting interest driven by the strong in vitro action of MAG. When combined with Nogo knockout, the triple elimination of all 3 myelin inhibitors promotes greater axonal outgrowth and functional recovery than Nogo knockout alone.14 This suggests a degree of compensation within myelin signaling that may provide for adjunctive therapies in stroke or spinal cord injury. A receptor decoy that consists of NgR1 and NgR2 motifs that blocks Nogo, MAG, and oligodendrocyte myelin glycoprotein interactions with NgR1 and NgR2 has been developed and enhances axonal outgrowth in vitro.15

Myelin or oligodendrocyte axonal growth inhibitors also include Ephrin B3, semaphorins 4a, 4d, and 6a, netrin 1, and RGMa.4,5,16,17 The reactivation of these developmental axonal guidance molecules after injury, in which growth cones are again traversing regions of the CNS, suggests that they may be suitable targets to promote axonal sprouting after stroke. Netrin-1 can inhibit axonal sprouting in spinal cord injury likely through the Unc-5 receptor on neurons.18 Antibody blockade of RGMa promotes axonal sprouting and recovery after spinal cord injury.19 However, these developmental axonal guidance molecules likely have other effects in the injured CNS. Sema4d is involved in microglial activation and oligodendrocyte differentiation after stroke or spinal cord injury.20 Ephrins and semaphorins are important in forming tissue boundaries in the injured CNS, particularly astrocyte, Schwann cell, and fibroblast zones in the spinal cord scar21,22 and in brain trauma.23 These findings highlight the complex interplay of cell–cell signaling systems after injury and that axonal sprouting after stroke will not involve just the isolated interaction of myelin ligands and neuronal receptors.

Astrocyte or Extracellular Matrix Growth Inhibitors After Stroke

Reactive astrocytes produce growth inhibitory molecules such as chondroitin sulfate proteoglycans (CSPGs).24,25 Within the extracellular matrix, CSPGs may be growth-inhibitory by directly contacting and blocking growth cones, by presenting growth inhibitory molecules, or by structurally blocking dendritic rearrangement in the perineuronal net.4,25 Recent work has shown that a specific protein tyrosine phosphatase receptor, PTPSigma,26 can selectively transduce the growth inhibitory signals of CSPGs,27 including neuro-
RhoA Pathway Inhibition

Ephrins, semaphorins, Nogo, MAG, oligodendrocyte myelin glycoprotein, and RMGα signal through RhoA and its downstream Rho kinase (ROCK). RhoA signaling accomplishes the business end of axonal growth inhibition by linking to the cytoskeleton and promoting microtubule depolymerization and actin contraction.\(^4,5,31\) Rho inhibitors mediate a powerful blockade of the axonal growth inhibition in neurite outgrowth assays in vitro for many molecules and promote axonal sprouting in spinal cord and other CNS injury models in vivo.\(^4,5,31\) Intracellular delivery of a Rho inactivator has been developed with tat conjugation.\(^32\) A major problem with targeting a growth inhibitory “master switch” is that it will be active for other cellular functions in nonneuronal cells, leading to potentially widespread off-target effects. Pharmacological targets could be used within Rho signaling that are more tissue-specific. ROCK exits in 2 isoforms. ROCKI is ubiquitously but ROCKII is concentrated in the CNS as well as muscle, liver, and lung.\(^31\) Recent work with ROCKII knockouts indicates that this enzyme is a viable target for promoting a more selective CNS RhoA inhibition and facilitating axonal outgrowth.\(^33\)

Axonal Growth Stimulators

Focused reactivation of a neuronal growth state after CNS injury has emerged as a key pharmacological target.\(^33\) This is because simply blocking axonal growth inhibitors has not resulted in substantial axonal sprouting, particularly of long axonal projections such as the corticospinal tract or, in experimental injury models, the optic tract.\(^3,35\) There is growing evidence for a specific molecular program in sprouting adult neurons after stroke.\(^3,24,35,36\) Several studies have uncovered pharmacological targets that promote a neuronal growth state in the adult CNS.\(^24,26–39\) Inosine triggers a serine/threonine kinase (Mst3b) to induce greater axonal outgrowth in retinal ganglion cells and in corticospinal neurons contralateral to the stroke site.\(^3,39\) Interestingly, inosine induces a gene expression profile in the contralateral cortex that overlaps with the gene expression profile in other sprouting neurons.\(^36\) The phosphatase PTEN also potently controls axonal outgrowth. Blockade of PTEN after optic nerve injury promotes substantial axonal outgrowth in the optic nerve to a degree not seen with other molecular manipulations.\(^40\) PTEN knockout also enhances neurogenesis after stroke.\(^41\) PTEN antagonizes the action of the PI3 kinase/Akt pathways, which mediates many of the downstream effects of neurotrophins and other growth factor receptors.\(^40,42\) One downstream effect of PTEN is the inhibition of mTOR.\(^40,42\) This cascade provides a target-rich environment for the development of “progrowth” approaches to promote axonal sprouting and recovery after stroke or spinal cord injury. A caveat is that PTEN is a commonly altered pathway in many cancers such as glioblastomas.\(^42\) Induction of a growth state in a postmitotic cell such as neuron will require careful targeting and attention to the duration of therapy, because neighboring astrocytes, and indeed all mitotically active cells, may respond to this therapy in a deleterious “progrowth” manner.

Sources of Funding

This work was supported by National Institutes of Health Grant NS53957, the Larry L. Hillblom Foundation, and the Dr Miriam and Sheldon G. Adelson Medical Research Foundation.

Disclosures

None.

References

15. Robak LA, Venkatesh K, Lee H, Raiker SJ, Duan Y, Lee-Osbourne J, Hofer T, Mage RG, Rader C, Giger RJ. Molecular basis of the interactions of the Nogo-66 receptor and its homolog NgR2 with myelin-


Targets for Neural Repair Therapies After Stroke
S. Thomas Carmichael

Stroke. 2010;41:S124-S126
doi: 10.1161/STROKEAHA.110.597146
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/41/10_suppl_1/S124

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published
in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office.
Once the online version of the published article for which permission is being requested is located, click
Request Permissions in the middle column of the Web page under Services. Further information about this
process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/