Hemostatic Proteins and Their Association With Hematoma Growth in Patients With Acute Intracerebral Hemorrhage

Joan Martí-Fàbregas, PhD; Montserrat Borrell, PhD; Yolanda Silva, PhD; Raquel Delgado-Mederos, PhD; Sergi Martínez-Ramírez, MD; Manuel de Juan-Delago, MD; Isabel Tirado, PhD; Aída Alejaldre, MD; Rebeca Marín, RN; Josep-Lluis Martí-Vilalta, PhD; Jordi Fontcuberta, PhD

Background and Purpose—We tested the hypothesis that proteins of hemostasia could be associated with hematoma growth (HG) in patients with acute intracerebral hemorrhage.

Methods—We prospectively studied patients with spontaneous supratentorial intracerebral hemorrhage within the first 6 hours after the onset of symptoms. HG was defined as an increase >33% in the volume of hematoma on CT obtained 24 to 72 hours after the onset of symptoms in comparison with the CT obtained at admission. We collected admission and follow-up blood samples. We measured fibrinogen, factor XIII, thrombin activatable fibrinolysis inhibitor, plasminogen activator inhibitor, plasminogen, α2-antiplasmin, tissue plasminogen activator, d-dimer, thrombomodulin, thrombin–antithrombin complex, and plasmin–antiplasmin complex.

Results—We included 90 patients with a mean age of 71±10.8 years; 61% were men. HG was observed in 35 (39%) of the patients. Mean baseline and follow-up protein measurements showed no difference between the groups with and without HG. The analysis of variance showed that factor XIII activity decreased in the non-HG group in the 24 to 72 hours sample, whereas it increased in the HG group (P=0.001).

Conclusion—Factor XIII was the only measured protein related to HG. The levels at the follow-up sample decreased in the non-HG group and increased in the HG group. Further studies are needed to confirm this association. (Stroke. 2010; 41:2976-2978.)

Key Words: factor XIII ■ hematoma expansion ■ hemostasia ■ intracerebral hemorrhage ■ prognosis

Among those patients with intracerebral hemorrhage (ICH) diagnosed within the first 3 hours after the onset of symptoms, 38% exhibit an increase >33% in the hematoma volume when a follow-up CT scan is performed 20 hours later.1 Hematoma growth (HG) is associated with poor outcome and mortality2 and therefore is a therapeutic target during the acute stage of ICH.

Although the pathophysiology of HG is unclear, it is hypothesized that a local coagulopathy develops around the hematoma.3 Our hypothesis was that an increase in the levels of fibrinolytic proteins and/or a decrease in the level of coagulation proteins could be associated with HG. We analyzed sequential blood samples of patients with acute ICH.

Patients and Methods

We prospectively studied patients with ICH at two centers. We performed a provisional analysis after recruiting the first 48 patients, and then we focused our search on those proteins that showed a trend toward significance when comparing patients with and without HG, increased the sample number, and added samples from another center to generalize our findings.

We included patients with a spontaneous supratentorial ICH diagnosed within the first 6 hours after the onset of symptoms. A follow-up CT was obtained within 24 to 72 hours after the onset of symptoms. We excluded patients treated with an emergent surgical evacuation, those who died before a follow-up CT, ICH attributable to anticogulants, other bleeding diathesis, tumor, and arterio-venous malformation. Patients or their legal representatives gave written consent to participate.

In addition to the admission CT, a follow-up CT was obtained within 24 to 72 hours after the onset of symptoms. Hematoma volume was calculated according to the ABC/2 method.1 The absolute HG value and the percentages of HG were obtained.

We also collected blood samples at admission and at follow-up in one-tenth of 0.129 mol/L sodium citrate. Plasma was obtained by centrifugation at 3000g for 20 minutes at room temperature. We measured fibrinogen, factor XIII activity, functional thrombin activatable fibrinolysis inhibitor, plasminogen activator inhibitor activity, plasminogen, α2-antiplasmin, plasminogen activator, d-dimer, soluble thrombomodulin, thrombin–antithrombin complex, and plasmin–antiplasmin complex.

Received July 8, 2010; accepted August 20, 2010.

From the Department of Neurology (J.M.F., R.D.M., S.M.R., A.A., R.M., J.L.M.V.), Thrombosis and Hemostasia Unit (M.B., I.T., J.F.), and Neuroradiology Unit (M.d.J.D.), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Neurology (Y.S.), Hospital Universitari Dr. Josep Trueta, Girona, Spain.

Correspondence to Joan Martí-Fàbregas, PhD, Servei de Neurologia, Hospital de la Santa Creu i Sant Pau, Avda Sant Antoni Maria Claret, 167, 08025 Barcelona, Spain. E-mail jmarti@santpau.cat

© 2010 American Heart Association, Inc.

Stroke is available at http://stroke.ahajournals.org

DOI: 10.1161/STROKEAHA.110.595868

2976
Table 1. Univariate Comparison of the Values of Each Hemostatic Protein in Patients With or Without HG

<table>
<thead>
<tr>
<th>Group</th>
<th>HG</th>
<th>Non-HG</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibrinogen (g/L)</td>
<td>Baseline (n=75)</td>
<td>3.73 (0.63)</td>
<td>3.72 (0.80)</td>
</tr>
<tr>
<td></td>
<td>Follow-up (n=71)</td>
<td>4.1 (0.86)</td>
<td>4.4 (1.2)</td>
</tr>
<tr>
<td>Factor XIII activity (%)</td>
<td>Baseline (n=89)</td>
<td>133.3 (60.6)</td>
<td>153.3 (65.8)</td>
</tr>
<tr>
<td></td>
<td>Follow-up (n=82)</td>
<td>147.8 (55.9)</td>
<td>128.3 (55.3)</td>
</tr>
<tr>
<td>Functional thrombin activatable fibrinolysis inhibitor (%)</td>
<td>Baseline (n=45)</td>
<td>121 (25.5)</td>
<td>111.6 (33.7)</td>
</tr>
<tr>
<td></td>
<td>Follow-up (n=42)</td>
<td>107.8 (25.3)</td>
<td>109.6 (29.4)</td>
</tr>
<tr>
<td>Plasminogen activator inhibitor (U/mL)</td>
<td>Baseline (n=77)</td>
<td>5.9 (6.7)</td>
<td>9.2 (11.7)</td>
</tr>
<tr>
<td></td>
<td>Follow-up (n=69)</td>
<td>6.6 (7.5)</td>
<td>7.8 (10.7)</td>
</tr>
<tr>
<td>Plasminogen (%)</td>
<td>Baseline (n=48)</td>
<td>95.7 (11.7)</td>
<td>92.8 (7.9)</td>
</tr>
<tr>
<td></td>
<td>Follow-up (n=45)</td>
<td>93 (13)</td>
<td>88.1 (11.4)</td>
</tr>
<tr>
<td>α2-Antiplasmin (%)</td>
<td>Baseline (n=48)</td>
<td>87.7 (12.4)</td>
<td>86.1 (12.7)</td>
</tr>
<tr>
<td></td>
<td>Follow-up (n=45)</td>
<td>88.2 (14.6)</td>
<td>87.1 (13.6)</td>
</tr>
<tr>
<td>Tissue plasminogen activator (ng/mL)</td>
<td>Baseline (n=44)</td>
<td>11.8 (3.8)</td>
<td>14.5 (7.6)</td>
</tr>
<tr>
<td></td>
<td>Follow-up (n=40)</td>
<td>12.3 (3.6)</td>
<td>13.3 (7.4)</td>
</tr>
<tr>
<td>D-dimer (µg/L)</td>
<td>Baseline (n=44)</td>
<td>747.9 (504.2)</td>
<td>801.5 (589.7)</td>
</tr>
<tr>
<td></td>
<td>Follow-up (n=42)</td>
<td>834 (549.2)</td>
<td>893.3 (579.5)</td>
</tr>
<tr>
<td>Soluble thrombomodulin (ng/mL)</td>
<td>Baseline (n=73)</td>
<td>36.5 (16.3)</td>
<td>36.5 (31.7)</td>
</tr>
<tr>
<td></td>
<td>Follow-up (n=69)</td>
<td>34.8 (18.1)</td>
<td>38.6 (37.2)</td>
</tr>
<tr>
<td>Thrombin–antithrombin complex (µg/L)</td>
<td>Baseline (n=45)</td>
<td>30 (39.7)</td>
<td>21.2 (30.4)</td>
</tr>
<tr>
<td></td>
<td>Follow-up (n=41)</td>
<td>11.2 (8.4)</td>
<td>13.6 (13.9)</td>
</tr>
<tr>
<td>Plasmin–antiplasmin complex (ng/mL)</td>
<td>Baseline (n=48)</td>
<td>423.1 (258.8)</td>
<td>405.7 (379.4)</td>
</tr>
<tr>
<td></td>
<td>Follow-up (n=44)</td>
<td>328.7 (411.3)</td>
<td>239.5 (81)</td>
</tr>
</tbody>
</table>

HG indicates hematoma growth. Values are means (SD) or percentages.

For each patient we recorded age, gender, intraventricular hemorrhage (yes/no), time to admission CT, volume of admission and follow-up CT, and absolute and percentage of HG.

Mean and SD of continuous variables were compared between the 2 groups (HG vs non-HG) by a nonparametric test (Mann-Whitney U test). Categorical variables were compared using the χ2 test. The time course of values for each protein was evaluated by a 2-way repeated-measures analysis of variance (time [admission or follow-up] and HG group [HG or non-HG]).

Insufficient volume of blood samples resulted in an incomplete analysis of the hemostatic proteins in some patients.

The mean age in our sample was 71±10.8 years; 61% were men. HG was observed in 35 (39%) of the patients. The HG group and the non-HG group were comparable for demographic data, frequency of intraventricular hemorrhage, and volume of the hematoma at baseline. However, we found a shorter time to first CT (P=0.0003) in the HG group. The follow-up CT showed a significant increase in volume in the HG group (mean absolute increase, 27.5 mL; relative increase, 213.7%).

As shown in Table 1, no differences between both groups were observed in the levels of the hemostatic proteins, although we observed a trend to higher values of factor XIII at admission (P=0.01) and lower values at follow-up (P=0.08) in the non-HG group.

The results of the 2-way analysis of variance analysis (Table 2) indicated that some proteins changed from baseline level to follow-up. Fibrinogen increased, whereas thrombin–antithrombin, plasminogen, plasmin–antiplasmin complex, and functional thrombin activatable fibrinolysis inhibitor decreased. However, the change was observed for all these factors in patients from the HG and non-HG groups. Notably, factor XIII showed a different time course depending on the group (P=0.001), ie, it decreased with time in non-HG patients and increased in patients with HG (Figure).

Discussion

In this prospective and observational study of patients with acute spontaneous ICH, we did not observe significant differences between groups (with or without HG) in the levels of the hemostatic proteins when measured at admission or at follow-up. It remains possible that a larger study would have demonstrated that a low initial factor XIII is associated with HG. The time course of these levels indicates a systemic
activation of hemostasia, but these changes were not associated with HG, except for factor XIII activity.

Some previous prospective studies reported the effect of certain variables on the risk of HG. Few studies have examined whether systemic activation of hemostasia occurs in patients with acute ICH and, specifically, what influence this activation has on the risk of HG. Ours is the first study to our knowledge that focuses on the relationship between hemostatic factors and HG in sequential samples, and it is the first study to our knowledge to analyze the activity of factor XIII. One study suggested that in patients with hypertensive ICH, the hematoma became larger when the thrombin generated after bleeding was insufficient. Fujii et al also reported that HG was more likely in patients with coagulation abnormalities. Our study confirms that there is a systemic activation of hemostasia after acute ICH. However, most of the changes in hemostatic protein levels that we observed were common to patients with or without HG, and only the activity of factor XIII differed between the 2 groups. Our hypothesis is that patients with higher factor XIII activity are able to have faster and/or better-stabilized clots with enhanced resistance to endogenous lysis. Because of this increased utilization of factor XIII, its activity in peripheral blood decreases with time, whereas it is stable or increases in HG patients.

The main limitations of our study are the small number of patients, our findings do not imply a causal relationship between factor XIII activity and HG, and the changes that occur at a local level may not be detected in our samples. The results of our study show that the baseline measurement of any of the hemostatic proteins is not useful to predict which patient will experience HG. However, our finding that the time course of factor XIII is associated with HG adds to the knowledge of its pathophysiology and may be a useful means to monitor it. Further studies are needed to confirm this association and to clarify why HG occurs in some but not all patients with ICH.

Acknowledgments
The authors are grateful to Professor William Stone for his helpful comments.

Sources of Funding
This work was supported by grants from the Fondo de Investigaciones Sanitarias (grant PI030670) and the Spanish Stroke Research Network RETICS (RENEVAS), the Spanish Ministry of Health (Instituto de Salud Carlos III).

Disclosures
None.

References
Hemostatic Proteins and Their Association With Hematoma Growth in Patients With Acute Intracerebral Hemorrhage

Joan Martí-Fàbregas, Montserrat Borrell, Yolanda Silva, Raquel Delgado-Mederos, Sergi Martínez-Ramírez, Manuel de Juan-Delago, Isabel Tirado, Aída Alejaldre, Rebeca Marín, Josep-Lluis Martí-Vilalta and Jordi Fontcuberta

Stroke. 2010;41:2976-2978
doi: 10.1161/STROKEAHA.110.595868

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/41/12/2976

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2012/02/26/41.12.2976.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/
Белки и протеины свертывающей системы крови и их связь с ростом гематомы у пациентов с острым внутримозговым кровоизлиянием

Department of Neurology, Thrombosis and Hemostasis Unit and Neuroradiology Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Neurology, Hospital Universitari Dr. Josep Trueta, Girona, Spain.

Предпосылки и цель исследования. Мы проверили гипотезу о том, что активность белков свертывающей системы крови может быть связана с ростом гематомы (РГ) у пациентов с острым внутримозговым кровоизлиянием. Методы. Провели проспективное исследование с участием пациентов со спонтанным супертенториальным внутримозговым кровоизлиянием в течение первых 6 часов после появления симптомов. Критерием РГ было увеличение объема гематомы более чем на 33% по результатам компьютерной томографии (КТ), выполненной в течение 24–72 часов от начала заболевания по сравнению с результатами КТ при поступлении. Внешний образец крови пациента при поступлении и при последующих наблюдениях. В образец крови изучали содержание фактора VII, фактора XIII, активирующего тромбина ингибитора фибринолиза, ингибитора активатора плазминогена, плазминогена, α2-аппликата, фибриногена, D-димера, тромбомодулина, комплекса тромбин-активатора и комплекса плазмин-аппликата. Результаты. В исследовании приняли участие 90 пациентов (61% мужчин), средний возраст участников составил 71±10,8 года. Рост гематомы зарегистрировали у 35 (39%) пациентов. Между группами пациентов с РГ и без РГ различий в среднем содержании белков при поступлении и при последующих наблюдениях выявлено не было. Диагностический анализ показал, что в группе пациентов без РГ активность фактора XIII в образце крови, полученной в период 24–72 часов, отличалась в то же время произошло повышение его активности в группе пациентов с РГ (р<0,001). Следовательно, фактор XIII был значимым белком, активность которого была связана с РГ. Уровень его содержания в образце крови в период последующих наблюдений оказался в группе пациентов без РГ и увеличился в группе с РГ. Для подтверждения этой связи необходимо проведение дальнейших исследований.

Ключевые слова: фактор XIII (factor XIII), рост гематомы (hematoma expansion), гемостаз (hemostasis), внутримозговое кровоизлияние (intracerebral hemorrhage), прогноз (prognosis).

Среди пациентов с внутримозговым кровоизлиянием (ВМК), диагностированным в течение первых 3 часов после появления симптомов во результатам КТ, выполненной через 20 часов, в 38% случаев происходило увеличение объема гематомы более чем на 33% [1]. Рост гематомы при поступлении и в течение первых 6 часов от появления симптомов. Компьютерная томография выполняли в течение 24–72 часов от появления симптомов. Мы исключали пациентов, которые проводили неотложное хирургическое вмешательство/заключение гематомы, пациентов, страдающих от кровотечения, а также пациентов, склоняющихся к выполнению КТ в динамике, пациентов, у которых ВМК была связана с приемом антикоагулянтов, другими геморрагическими диагнозами, наличие патологии и артериовенозной матернакологии. Пациенты или их законные представители дали письменное согласие на участие в исследовании.

В дополнение к КТ, сделанных при поступлении, в течение 24–72 часов от момента появления симптомов ВМК выполняли повторную КТ. Объем гематомы рассчитывали в соответствии с методом ABC/2 [1]. Рассчитали абсолютный прирост и относительное увеличение объема гематомы.

Мы провели проспективное исследование с участием пациентов с ВМК в двухцентрах. Предварительный анализ выполнили после включения первых 48 пациентов, а затем сосредоточили внимание на изучении белков, в отношении которых выявили тенденцию к достоверному различию в их содержании и активности при сравнении пациентов с РГ и без РГ, увеличении размер выборки и добавили выборку из другого центра для репрезентативности предполагаемых выводов.

Мы исключили пациентов со спонтанным супертенториальным ВМК, диагностированным в течение первых 6 часов от появления симптомов. Компьютерная томография выполняла в течение 24–72 часов от появления симптомов. Мы исключили пациентов, которые проводили неотложное хирургическое вмешательство/заключение гематомы, пациентов, склоняющихся к выполнению КТ в динамике, пациентов, у которых ВМК была связана с приемом антикоагулянтов, другими геморрагическими диагнозами, наличием патологии и артериовенозной матернакологии. Пациенты или их законные представители дали письменное согласие на участие в исследовании.

В дополнение к КТ, сделанных при поступлении, в течение 24–72 часов от момента появления симптомов ВМК выполняли повторную КТ. Объем гематомы рассчитывали в соответствии с методом ABC/2 [1]. Рассчитали абсолютный прирост и относительное увеличение объема гематомы.

Мы также исследовали общие крови, взятые при поступлении и в период последующих наблюдений, смешанный с 0,1 мл 0,129 ммоль/л цитрат натрия. Плазму получали путем центрифугирования при 3000х в течение 20 минут при комнатной температуре. Мы определили содержание фибриногена, активность фактора XIII, содержание гидроксилированного тромбина-активируемого ингибитора фибриногена, активность ингибиторная активатора плазминогена, содержание
плазминогена, α2-антиплазмина, активатора плазминогена, Д-димера, растворимого тромбомодулина, комплекса тромбина-антитромбина и комплекса плазмина-аплазмина.

У каждого пациента мы регистрировали возраст, пол, наличие внутрижелудочкового кровоизлияния (ез/ез), время до выполнения КТ при поступлении, объем гематомы при поступлении и по результатам последующей КТ, а также абсолютный прирост и относительное увеличение объема гематомы.

Проводили сравнение по категориям (в стандарте вышеприведенных [COI]) для непрерывных переменных между 2 группами (РГ и без РГ) с помощью непараметрического теста (U-тест Манна-Уитни). Категориальные переменные сравнивали с использованием критерия хи-квадрата. Динамику изменения содержания каждого белка оценивали с помощью 2-стороннего дисперсионного анализа повторных измерений: время (при поступлении и после постепенных наблюдений) и группа пациентов (РГ и без РГ) с помощью хи-квадрата.

Таблица 1. Результаты однократного сравнительного анализа содержания каждого белка свертывающей системы крови у пациентов с и без РГ

<table>
<thead>
<tr>
<th>Белок/фактор свертывающей системы крови</th>
<th>Пациенты с РГ</th>
<th>Пациенты без РГ</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Фибриноген, г/л</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>исходно (n=75)</td>
<td>3,72 (0,63)</td>
<td>3,72 (0,80)</td>
<td>0,49</td>
</tr>
<tr>
<td>при последующих измерениях (n=71)</td>
<td>4,1 (0,86)</td>
<td>4,4 (1,2)</td>
<td>0,38</td>
</tr>
<tr>
<td>Активность фактора XIII, %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>исходно (n=89)</td>
<td>133,3 (60,6)</td>
<td>153,3 (65,8)</td>
<td>0,11</td>
</tr>
<tr>
<td>при последующих измерениях (n=82)</td>
<td>147,8 (65,9)</td>
<td>128,3 (65,3)</td>
<td>0,08</td>
</tr>
<tr>
<td>Функциональная активность тромбина Прокоагуля, %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>исходно (n=45)</td>
<td>121 (25,5)</td>
<td>111,6 (33,7)</td>
<td>0,26</td>
</tr>
<tr>
<td>при последующих измерениях (n=42)</td>
<td>107,8 (25,3)</td>
<td>109,6 (29,4)</td>
<td>0,55</td>
</tr>
<tr>
<td>Прокоагулятор активатора плазминогена, ЕД/мл</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>исходно (n=77)</td>
<td>5,9 (7,5)</td>
<td>9,2 (11,7)</td>
<td>0,19</td>
</tr>
<tr>
<td>при последующих измерениях (n=69)</td>
<td>6,6 (7,5)</td>
<td>7,8 (10,7)</td>
<td>0,78</td>
</tr>
<tr>
<td>Плаэминоген, %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>исходно (n=48)</td>
<td>95,7 (11,7)</td>
<td>92,8 (7,9)</td>
<td>0,38</td>
</tr>
<tr>
<td>при последующих измерениях (n=45)</td>
<td>93 (13)</td>
<td>88,1 (11,4)</td>
<td>0,23</td>
</tr>
<tr>
<td>α2-антиплазмин, %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>исходно (n=46)</td>
<td>87,7 (12,4)</td>
<td>86,1 (12,7)</td>
<td>0,68</td>
</tr>
<tr>
<td>при последующих измерениях (n=45)</td>
<td>88,2 (14,6)</td>
<td>87,1 (13,6)</td>
<td>0,90</td>
</tr>
<tr>
<td>Тканевый активатор плазминогена, нг/мл</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>исходно (n=44)</td>
<td>11,8 (13,8)</td>
<td>14,5 (7,6)</td>
<td>0,32</td>
</tr>
<tr>
<td>при последующих измерениях (n=40)</td>
<td>12,3 (16,6)</td>
<td>13,3 (7,4)</td>
<td>0,95</td>
</tr>
<tr>
<td>Д-димер, мкг/л</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>исходно (n=44)</td>
<td>747,9 (504,2)</td>
<td>801,5 (689,7)</td>
<td>0,66</td>
</tr>
<tr>
<td>при последующих измерениях (n=42)</td>
<td>834 (549,2)</td>
<td>893,3 (579,5)</td>
<td>0,76</td>
</tr>
<tr>
<td>Растворимый тромбомодулин, нг/мл</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>исходно (n=73)</td>
<td>36,5 (16,3)</td>
<td>36,5 (31,7)</td>
<td>0,23</td>
</tr>
<tr>
<td>при последующих измерениях (n=69)</td>
<td>34,8 (18,1)</td>
<td>38,6 (37,2)</td>
<td>0,65</td>
</tr>
<tr>
<td>Комплекс тромбина-антитромбина, мкг/л</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>исходно (n=45)</td>
<td>30 (39,7)</td>
<td>21,2 (30,4)</td>
<td>0,38</td>
</tr>
<tr>
<td>при последующих измерениях (n=41)</td>
<td>11,2 (8,4)</td>
<td>13,6 (13,9)</td>
<td>0,91</td>
</tr>
<tr>
<td>Комплекс плазмин-антиплазмин, нг/мл</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>исходно (n=48)</td>
<td>423,1 (258,8)</td>
<td>405,7 (379,4)</td>
<td>0,14</td>
</tr>
<tr>
<td>при последующих измерениях (n=44)</td>
<td>398,7 (411,3)</td>
<td>2395 (81)</td>
<td>0,93</td>
</tr>
</tbody>
</table>

Примечание. РГ — рост гематомы. Значение представлено в виде "среднее значение — SD" или процентного соотношения.
ПАТОГЕНЕЗ И ДИАГНОСТИКА

Таблица 2. Результаты двустороннего дисперсионного анализа у пациентов с и без РГ при сравнении образцов крови, взятой изначально и при последующих наблюдениях.

<table>
<thead>
<tr>
<th>Белок/фактор свертывающей системы крови</th>
<th>Ч</th>
<th>Ч (время)</th>
<th>Ч (группа с РГ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Фибриноген, г/л</td>
<td>70</td>
<td><0,0001</td>
<td>0,22</td>
</tr>
<tr>
<td>Активность фактора XIII, %**</td>
<td>81</td>
<td>0,22</td>
<td>0,001</td>
</tr>
<tr>
<td>Функциональный активируемый тромбоксин ингибитор фибринолиза, %***</td>
<td>41</td>
<td>0,03</td>
<td>0,72</td>
</tr>
<tr>
<td>Ингибитор активатора плазминогена, Ед/мл</td>
<td>71</td>
<td>0,71</td>
<td>0,57</td>
</tr>
<tr>
<td>Плазминоген, %***</td>
<td>45</td>
<td>0,01</td>
<td>0,41</td>
</tr>
<tr>
<td>Десятинизирон, %</td>
<td>45</td>
<td>0,31</td>
<td>0,9</td>
</tr>
<tr>
<td>Тромбов активатор плазминогена, г/мл</td>
<td>40</td>
<td>0,51</td>
<td>0,21</td>
</tr>
<tr>
<td>С аминоген, %</td>
<td>42</td>
<td>0,32</td>
<td>0,91</td>
</tr>
<tr>
<td>Разрывный тромбомодулин, г/мл</td>
<td>68</td>
<td>0,79</td>
<td>0,19</td>
</tr>
<tr>
<td>Комплекс тромбин-антиплазмин, Ед/мл***</td>
<td>41</td>
<td>0,01</td>
<td>0,27</td>
</tr>
<tr>
<td>Комплекс плазмин-антиплазмин, г/мл**</td>
<td>44</td>
<td>0,04</td>
<td>0,57</td>
</tr>
</tbody>
</table>

Примечание. РГ — рост гематомы. *— независимое повышение в группе с РГ. **— повышение в группе с РГ, снижение в группе без РГ. ***— независимое повышение в группе с РГ.

Как показано в таблице 1, различий в содержании белков свертывающей системы крови в обеих группах пациентов не обнаружено, хотя наблюдалась тенденция к более высокому содержанию фактора XIII при посту лении (p<0,11) и более низкому его содержанию в период последующих наблюдений (p<0,08) в группе пациентов без РГ.

Результаты двустороннего дисперсионного анализа (таблица 2) показали, что содержание некоторых белков в период последующих наблюдений изменилось по сравнению с исходным уровнем. Содержание фибриногена увеличилось, в то время как содержание комплекса тромбин-антиплазмин, плазминогена, комплекса плазмин-антиплазмин и функциональ ного тромбина активируемого ингибитора фибринолиза уменьшилось. Однако эти изменения в содержании всех белков зарегистрировали у пациентов обеих групп. В частности, для фактора XIII обнаружено изменение динамики его содержания в зависимости от группы пациентов (p<0,01), т. е. его содержание с течением времени снижалось у пациентов без РГ и повышалось у пациентов с РГ (см. рисунок).

ОБСУЖДЕНИЕ

В проведенном проспективном и обсервационном исследовании пациентов с острым спонтанным ВМК мы не обнаружили существенных различий в содержании белков свертывающей системы крови при поступлении в период после исходных наблюдений между группами пациентов (с или без РГ). Следовательно, вероятность, что масштабное исследование позволяет предполагать связь между исходно низким содержанием фактора XIII и РГ. Динамика изменения содержания белков указывает на системную активацию гемостаза, но эти изменения не были связаны с РГ за исключением активнос ти фактора XIII.

В некоторых ранее проведенных проспективных исследованиях сообщали о влиянии некоторых факторов на риск РГ [4]. В нескольких исследованиях изучали развитие системной активации гемостаза у пациентов с острым ВМК [3, 5] и, в частности, влияние этой активации на риск РГ [3, 6]. Насколько нам известно, в нашем исследовании мы впервые удалили основное внимание изучению связи между факторами гемостаза и РГ в последовательной выборке и впервые проанализировали активность фактора XIII. В одном исследовании [3] предполагалось, что у пациентов с гипертоническим ВМК увеличение объема гематомы происходило из-за недостаточного образования тромбина после кровоизлияния. У. Фуцю и соавт. [6] также сообщили, что РГ чаще наблюдался у пациентов с нарушениями в системе свертывания крови. Наше исследование подтверждает, что после остrego ВМК происходит системная активация гемостаза. Однако большинство наблюдаемых изменений в содержании белков свертывающей системы крови было одинаковым у пациентов с или без РГ, различалась только активность фактора XIII в двух группах. Наша гипотеза заключается в том, что у пациентов с высокой активностью фактора XIII тромбы образуются быстрее и/или являются более стабильными, с повышенной устойчивостью к эндоотелиальной лизису. В связи с более интенсивным расщеплением фактора...
XIII, его активность в периферической крови со вре-менем уменьшается, тогда как остается стабильной или повышается у пациентов с РГ.

К основным ограничениям нашего исследования относится небольшое число пациентов и отсутствие подтверждения причинно-следственной связи между активностью фактора XIII и РГ. Результаты проведенного исследования показывают, что исходное определение содержания любого из белков сверты-вающей системы крови не играет роли в прогнозировании РГ у пациентов. Однако выявленная связь между динамикой изменения активности фактора XIII и РГ вносит свой вклад в понимание патофизиологии РГ. Возможно, определение активности фактора XIII может быть полезным методом контроля РГ. Необходимы дальнейшие исследования, чтобы подтвердить эту связь и выяснить, почему РГ происходит у некоторых, но не у всех пациентов с ВМК.

Литература