Personalized Approaches to Clopidogrel Therapy
Are We There Yet?

Christopher D. Anderson, MD; Alessandro Biffi, MD; Steven M. Greenberg, MD, PhD; Jonathan Rosand, MD, MSc

Abstract—Clopidogrel is one of the most commonly prescribed medications worldwide. Recent advisories from the US Food and Drug Administration have drawn attention to the possibility of personalized decision-making for people who are candidates for clopidogrel. As is the case with antihypertensives, statins, and warfarin, common genetic sequence variants can influence clopidogrel metabolism and its effect on platelet activity. These genetic variants have, in multiple studies, been associated with adverse clinical outcomes. Concurrent medication use also influences how the body handles clopidogrel. Proton pump inhibitors, widely prescribed in conjunction with clopidogrel, may blunt its effectiveness. We address implications for bedside decision-making in light of accumulated data and current Food and Drug Administration advisories and conclude that genetic testing for CYP2C19 genotype and limitation of proton pump inhibitor interactions do not yet appear to offer an opportunity to optimize treatment given the current state of knowledge. (Stroke. 2010;41:2997-3002.)

Key Words: antiplatelet ■ genetics ■ stroke ■ review

Clopidogrel, in combination with aspirin, is standard treatment for both medical and interventional management of acute coronary syndrome (ACS). Dual antiplatelet therapy reduces the risk of repeat ACS events and death compared with aspirin alone and helps prevent stent thrombosis in patients undergoing percutaneous interventions. Patients presenting to neurovascular clinics are often on dual antiplatelet therapy because of coincident cardiac disease. Alternatively, clopidogrel monotherapy may be used as a first-line agent or, in the setting of an aspirin allergy or suspected aspirin ineffectiveness, in secondary prevention of ischemic stroke.

However, concerns have been raised regarding the efficacy of this agent in specific subgroups. In November 2009, the Food and Drug Administration (FDA) published a postmarket drug safety information announcement detailing drug-drug interactions between clopidogrel and omeprazole, urging against the concomitant use of these medications (Table 1). In March 2010, the FDA announced that clopidogrel would require a new black-box warning regarding reduced effectiveness in persons who are poor metabolizers of the medication, recommending testing for CYP2C19 genotype to aid clinical management (Table 2).

Both FDA announcements reflect increasing awareness of interindividual differences in medication efficacy and a growing desire to apply genetic discoveries to clinical medicine. These announcements place the clinician in the difficult position of weighing circumstantial and often contradictory information in pursuit of evidence-based practice. In this review, we discuss current evidence regarding the effect of CYP2C19 genotype and concurrent proton pump inhibitor (PPI) use on patients receiving clopidogrel for management of cardiovascular disease. We provide recommendations for clinical care and highlight areas of research that may clarify future practice.

Interindividual Variation in Clopidogrel Metabolism and Response

Common DNA sequence variants, called single nucleotide polymorphisms, appear within genes, creating different alleles of that gene within the population. In the case of clopidogrel, variants have been identified in multiple genes, which account for some, but not all, of the interindividual variability in the antiplatelet effect of clopidogrel. Several of these variants are fairly common, as represented by their allele frequency in the population, making them attractive targets for genetic screening. However, the effect size for these variants is small, with the consequence that the presence of any one accounts for only a small percentage of the interindividual variation in clopidogrel response. As with many medications, clopidogrel is dependent on multiple genetic and environmental factors to determine its
Genetic Modifiers of Clopidogrel Response
Interindividual variation in response to clopidogrel is driven by the pathways involved in the pharmacokinetics and pharmacodynamics of the drug. The pharmacokinetics (absorption and metabolism) of clopidogrel is analyzed by measurement of the maximum blood concentration of clopidogrel or its metabolites (Cmax) or the area under the curve of the blood concentration of clopidogrel over 24 hours. The pharmacodynamics (end-organ effect) of clopidogrel are tested using techniques to examine the residual platelet function after dosing of the drug. The standard pharmacodynamic measurement is aggregometry, in which a blood sample is exposed to ADP, and the resulting platelet aggregation provides a measure of residual platelet reactivity. Newer methods use flow cytometry to measure vasodilator stimulated phosphoprotein, a direct marker of residual ADP receptor activity. Both pharmacodynamic assays detect residual platelet function in the presence of clopidogrel, although the differences in technique prevent the results from being directly comparable between studies.

Clopidogrel is a pro-drug that must be absorbed and then metabolized into the active compound R-130964 to affect platelet function (Figure 1). Absorbed chiefly in the duodenum, it passes into enterocytes and into the portal circulation. On the luminal surface of the enterocyte, p-glycoprotein (encoded by ABCB1) actively pumps clopidogrel back into the duodenum. Polymorphisms in ABCB1 influence the bioavailability of clopidogrel and in some studies affect outcomes after ACS in patients on the drug.

After absorption, clopidogrel passes into the liver. Hepatic metabolism of clopidogrel involves 2 steps, each catalyzed by members of the cytochrome P450 (CYP) system: oxidation to 2-oxo-clopidogrel and conversion to the active R-130964, which is a direct marker of residual ADP receptor activity. By the pathways involved in the pharmacokinetics and pharmacodynamics of the drug.

Table 1. FDA Information for Healthcare Professionals
The concomitant use of omeprazole and clopidogrel should be avoided because of the effect on the active metabolite levels and anticoagulation activity of clopidogrel. Patients at risk for heart attacks or strokes who are given clopidogrel to prevent blood clots may not get the full protective anticoagulating effect if they also take prescription omeprazole or the over-the-counter form (Prilosec OTC).

Separating the dose of clopidogrel and omeprazole in time will not reduce this drug interaction.

Other drugs that should be avoided in combination with clopidogrel because they may have a similar interaction include: esomeprazole (Nexium), cimetidine (which is available by prescription as Tagamet and OTC as Tagamet HB), fluconazole (Diflucan), ketoconazole (Nizoral), voriconazole (VFEND), etravirine (inteliene), felbamate (Felbatol), fluoxetine (Prozac, Serifem, Symbax), fluvoxamine (Luvax), and ticlopidine (Ticlid).

At this time, FDA does not have sufficient information about drug interactions between clopidogrel and PPIs other than omeprazole and esomeprazole to make specific recommendations about their coadministration. Healthcare professionals and patients should consider all treatment options carefully before beginning therapy.

There is no evidence that other drugs that reduce stomach acid, such as most H2 blockers ranitidine (Zantac), famotidine (Pepcid), nizatidine (Axid), except cimetidine (Tagamet and Tagamet HB, a CYP2C19 inhibitor), or antacids interfere with the anticoagulating activity of clopidogrel. Ranitidine and famotidine are available by prescription and OTC to relieve and prevent heartburn, and antacids are available OTC to relieve heartburn.

Talk with your patients about the OTC medicines they take. Be aware that patients may be taking nonprescription forms omeprazole and cimetidine.

Table 2. FDA Black-Box Warning on Clopidogrel (Plavix)

Effectiveness of Plavix depends on activation to an active metabolite by the CYP system, principally CYP2C19.

Poor metabolizers treated with Plavix at recommended doses exhibit higher cardiovascular event rates after ACS or percutaneous coronary intervention than patients with normal CYP2C19 function.

Tests are available to identify a patient’s CYP2C19 genotype and can be used as an aid in determining therapeutic strategy.

Consider alternative treatment or treatment strategies in patients identified as poor CYP2C19 metabolizers.
Pharmacodynamic studies have also been performed on persons presenting with ACS receiving clopidogrel either before percutaneous intervention or for medical management. These studies have shown similar results to those described above, with CYP2C19*2 carriers demonstrating significantly higher RPA on clopidogrel than *1/*1 patients.3,16 However, it should be noted that although CYP2C19*2 status was associated with statistically significant differences in RPA, the very wide interquartile ranges within each genotype reported in these studies demonstrate substantial dramatic interindividual variability beyond that explained by CYP2C19 genotype.3

CYP2C19*2 and Clinical Outcome in Patients on Clopidogrel

The effect of CYP2C19*2 on the pharmacokinetics and pharmacodynamics of clopidogrel appears to be sufficient to influence clinical outcomes. Data from the EXCELSIOR trial have shown an association between higher RPA on clopidogrel and adverse clinical outcomes.17 Multiple studies have examined the association between CYP2C19 allele status and clinical outcomes such as recurrent cardiovascular events, in-stent thrombosis, and mortality in patients on clopidogrel after ACS presentations.3,8,15,17,18 A recent meta-analysis of all published studies on CYP2C19*2 and outcomes identified a risk odds ratio (OR) of 1.96 (95% CI, 1.14 to 3.37) for recurrent cardiovascular events per CYP2C19*2 allele19 and a risk OR of 3.82 (95% CI, 2.23 to 6.54) per allele for stent thrombosis.

The mechanism for increased adverse outcomes associated with the CYP2C19*2 genotype is likely related to attenuated effect of clopidogrel on platelet aggregation rather than another unmeasured cause. In one study that performed platelet aggregometry and followed clinical outcomes in patients on clopidogrel after ACS events, carriers of the CYP2C19*2 allele had higher on-clopidogrel RPA as well as increased incidence of adverse outcomes.3 This association between CYP2C19*2 and outcome was not observed after controlling for RPA in regression analysis. Hence, whereas unmeasured physiological changes conferred by the CYP2C19*2 allele could theoretically impact outcome, the
available evidence suggests that the increased risk of adverse outcomes is primarily mediated by impaired on-clopidogrel platelet inhibition in carriers of this allele.

PPIs and Clopidogrel

PPIs are widely prescribed in conjunction with antiplatelet therapy. Current American Heart Association guidelines recommend that all patients on dual antiplatelet therapy be prescribed a PPI regardless of *Helicobacter pylori* status or gastrointestinal bleeding risk. PPIs are inhibitors of CYP2C19 in vitro, with omeprazole showing more potent inhibition than newer-generation PPIs such as pantoprazole. Based on this evidence, several studies have assessed RPA in patients coprescribed clopidogrel and a PPI. For omeprazole, there is a significant increase in RPA in patients prescribed both clopidogrel and a PPI compared with clopidogrel alone. The results for other PPIs, particularly pantoprazole, are less clear. One study showed that RPA in ACS patients on clopidogrel and pantoprazole was similar to that of patients on clopidogrel alone, suggesting a compound-specific effect.

Despite the evidence that at least some PPIs affect residual platelet function in patients taking clopidogrel, the results of studies seeking to link this effect to adverse outcomes in ACS patients have been inconsistent. Multiple retrospective analyses, involving thousands of participants, have demonstrated a significant association between PPI/clopidogrel coprescription and adverse cardiovascular outcomes and death. However, these results might be confounded by greater illness severity among patients prescribed PPIs. Indeed, attempts to control for this confounding by indication using propensity matching weaken the association between PPI use and adverse outcome. The COGENT trial, the only randomized, double-blind, placebo-controlled trial of ACS patients discharged on either clopidogrel alone or clopidogrel and PPI demonstrated no association between coprescription and outcome. Among the 3627 participants on clopidogrel after ACS events, the hazard ratio for combined end points of vascular events and death was 1.02 (95% CI, 0.70 to 1.51). The survival curves for patients taking and not taking PPIs were entirely superimposable. In a recent meta-analysis of all available outcome studies, there was a risk OR of 1.43 (95%, CI 1.15 to 1.77) for adverse outcomes in patients coprescribed clopidogrel and a PPI. Meta-analysis restricted to only propensity-matched and randomized trials showed no association with outcome, with an OR of 1.15 (95% CI, 0.89 to 1.48). In contrast to the pharmacodynamic studies (which showed a compound-specific effect for RPA on clopidogrel), analyses of adverse outcomes have not demonstrated that pantoprazole and other newer PPIs have effects that differ from those of older PPIs such as omeprazole.

Should Genetic Testing for CYP2C19 Status Be Performed Routinely?

There is good evidence that CYP2C19*2 is associated with increased residual platelet function on clopidogrel compared with CYP2C19*1. Further, CYP2C19*2 genotype has been reliably associated with increased risk of adverse cardiovascular outcomes in ACS patients. The mechanism for this association appears to be through reduction in the antiplatelet effect of clopidogrel. Presented with these data, the question arises whether testing for CYP2C19 allele status would be beneficial for patient care. A genetic test is clinically useful when it guides practice through the reliable identification of patients who are likely to benefit from a change in therapy. Because CYP2C19 genotype alone has a relatively small influence on a patient’s response to clopidogrel, and there is dramatic interindividual variation in residual platelet function on clopidogrel, knowledge of CYP2C19 status is insufficient to inform physicians of the effect of clopidogrel on an individual patient. Numerous environmental, medical, and genetic factors play a role in clopidogrel pharmacology, including adherence to therapy, age, body mass index, diabetes status, and drug and dietary inhibitors of hepatic metabolism. CY2C19*1 carriers could have high residual platelet function for other reasons, and carriers of the *2 allele could have low RPA, limiting the predictive value of the test.

An additional limitation on the clinical utility of CYP2C19 genetic testing is that there are no proven therapies that can supplant clopidogrel as part of a dual antiplatelet regimen for active cardiovascular disease. Clopidogrel dose escalation has been studied in a small case series of CYP2C19*2 carriers and has not been shown to significantly change RPA. Additional studies of dose escalation in perceived clopidogrel resistance are needed, particularly given that alternative antiplatelet strategies such as prasugrel are as yet unproven. Therefore, at this time, it is reasonable to conclude that there is currently no change in practice dictated by knowledge of CYP2C19*2 allele status.

Should Patients Routinely Receive PPIs and Clopidogrel?

Although coprescription of clopidogrel and PPI medications appears to result in reduced antiplatelet effect, evidence linking coprescription to outcome is far less clear. Multiple large retrospective studies have found such an association, but the fact that several propensity-matched studies and one randomized controlled trial did not validate this finding raises concern for confounding. In addition, the utility of alternate forms of gastrointestinal prophylaxis is unclear. Although the FDA update (Table 1) points out that H2 blockers do not inhibit CYP2C19, their use in patients taking dual antiplatelets is not currently recommended by consensus guidelines. In a recent case-control study of 2777 patients with history of upper gastrointestinal bleeding and 5532 controls, patients on nonsteroidal anti-inflammatory drugs, aspirin, or clopidogrel were treated with PPI, H2 blocker, or nitrates for gastrointestinal prophylaxis. In those receiving clopidogrel therapy, only patients treated with PPIs had a significant reduction in GI bleeding risk. In addition to these data, withdrawal of PPIs from patients taking clopidogrel could have unintended gastrointestinal bleeding consequences, which have not yet been effectively weighed against the potential increase in adverse cardiovascular outcomes.

Recommendations

Based on available evidence, systematic CYP2C19 genotype testing for patients on clopidogrel appears to be of limited...
benefit to bedside decision-making (Table 3). Additional research into clinically useful platelet function analysis is likely to be of greater utility because residual platelet function on clopidogrel represents the final common pathway of environmental and genetic factors affecting clopidogrel efficacy. Additional insight into clopidogrel dose escalation strategies or other antiplatelet medications is also needed for CYP2C19 testing to become a useful part of the vascular physician’s armamentarium. One situation in which alternative therapies to clopidogrel have been established is secondary stroke prevention. Neurovascular patients on clopidogrel monotherapy could potentially benefit from knowledge of CYP2C19 genotype because as presence of the CYP2C19*2 allele could be used to justify retiral of aspirin or a switch to an alternative antiplatelet agent. We note that the utility of this strategy has not yet been explored.

Finally, given conflicting evidence for association between coprescription of clopidogrel and PPIs and adverse outcomes, it appears premature to recommend discontinuation of PPI therapy in patients on clopidogrel as part of a dual antiplatelet regimen (Table 1). Additional research is needed to understand the ramifications of any increase in gastrointestinal bleeding events in clopidogrel users who are off of PPIs. In management of neurovascular patients on clopidogrel monotherapy, testing for *H pylori* and review of gastrointestinal risk factors could be entertained, with possible discontinuation of PPI therapy in low-risk patients to minimize any possible interactions.

Conclusion

Clopidogrel is a commonly prescribed medication and has been proven useful in the prevention of recurrent cardiovas- cular and cerebrovascular events. It is natural to want to guarantee that our therapy is having its desired effect in every patient. In the case of clopidogrel, CYP2C19 genetic testing and limitation of PPI interactions do not yet appear to offer an opportunity to optimize treatment given the current state of knowledge.

Sources of Funding

This work was supported by the Bugher Foundation Centers for Stroke Prevention Research/American Stroke Association, National Institutes of Neurologic Disorders and Stroke (grant No. R01 NS059727), and Massachusetts General Hospital Deane Institute for the Integrative Study of Atrial Fibrillation and Stroke.

Disclosures

None.

References

Table 3. Summary and Recommendations

<table>
<thead>
<tr>
<th>CYP2C19*2 and clopidogrel pharmacokinetics/pharmacodynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
</tr>
<tr>
<td>The antiplatelet effect of clopidogrel depends on multiple genetic and environmental factors, and there is substantial interindividual variability in clopidogrel response. The CYP2C19*2 allele is associated with a decrease in both loading-dose and steady-state concentrations of the active metabolite of clopidogrel, as well as higher residual platelet function in patients on clopidogrel. However, CYP2C19 status appears to account for ≈12% of the interindividual variation in clopidogrel response.</td>
</tr>
<tr>
<td>Recommendation</td>
</tr>
<tr>
<td>Genotyping CYP2C19 status alone is insufficient to inform clinicians about on-clopidogrel residual platelet function.</td>
</tr>
</tbody>
</table>

CYP2C19*2 and clopidogrel-associated clinical outcomes

<table>
<thead>
<tr>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>The CYP2C19*2 allele is associated with increased risk of adverse cardiovascular outcomes, stent thrombosis, and death in individuals placed on clopidogrel after acute coronary events.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the absence of clinical evidence for effective alternative therapies, the impact of CYP2C19*2 status on clinical management is unclear. Additional research is needed into the use and safety of clopidogrel dose escalation, as well as the potential utility of alternate antiplatelet agents less sensitive to CYP2C19 genotype.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PPI use and clopidogrel-associated clinical outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
</tr>
<tr>
<td>Multiple retrospective studies have found an association between the dual prescription of clopidogrel and PPIs and increased risk of adverse cardiac outcomes and death in individuals placed on clopidogrel after acute coronary events. Other retrospective studies and one prospective randomized trial have not replicated this association.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>The association between PPI use in conjunction with clopidogrel and adverse outcomes is unclear. Potential unmeasured confounders may have influenced the results of retrospective analyses. Further randomized trials are needed.</td>
</tr>
</tbody>
</table>

Personalized Approaches to Clopidogrel Therapy: Are We There Yet?
Christopher D. Anderson, Alessandro Biffi, Steven M. Greenberg and Jonathan Rosand

Stroke. 2010;41:2997-3002; originally published online October 28, 2010;
doi: 10.1161/STROKEAHA.110.594069

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/41/12/2997

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2012/03/12/STROKEAHA.110.594069.DC1
http://stroke.ahajournals.org/content/suppl/2012/04/02/STROKEAHA.110.594069.DC2

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Stroke* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Stroke* is online at:
http://stroke.ahajournals.org//subscriptions/
맞춤형 클로피도그렐 치료

미국 식품 의약국(US Food and Drug Administration)은 최근에 권고안을 발표한 이후, 클로피도그렐을 투여받는 환자에서 개인화된 의사 결정을 통한 치료의 가용성에 대한 관심이 높아지고 있다. 항고혈압제, 스타틴(statin) 및 아فار린(warfarin)과 마찬가지로, 비도 높은 유전자 서열의 변이(genetic sequence variants)는 클로피도그렐의 대사 과정과 클로피도그렐을 통한 혈소판 활성 감소에 영향을 미친다. 다양한 연구에서 이 유전자 변이가 불량한 임상적 예후와 연관되어 있음을 보고한 바 있다. 병용 투여하는 약물 또한 전체 클로피도그렐 대사에 영향을 미친다. 클로피도그렐과 함께 처방되는 비도가 높은 양성자 펄프 억제제(proton pump inhibitor)는 그 효과를 감소시킬 수 있다.

저자들은 지금까지 알려진 데이터 및 현재의 식품 의약국 권고안에 근거하여, 임상 진료 현장에서 도움이 될 수 있도록 본 종목을 집필하였다. 또한 현재까지 알려진 지식에 근거하면, CYP2C19 유전형(genotype)에 대한 검사 및 양성자 펄프 억제제 치방의 재단은 최적의 치료를 제공한다고 결론을 내릴 수 없음을 서술하였다.

그러나 특정한 환자군에서 클로피도그렐이 그 효과를 발휘하지 못할 수 있다는 우려가 제기되었다. 2009년 11월, 미국 식품의약국(Food and Drug Administration, FDA)은 클로피도그렐과 오메프라졸(omeprazole)의 약물 상호작용에 대한 시판 중 약물 안전 정보를 발표하여, 이 두 약물의 병용 투여 회피를 촉구하였다(Table 1). 2010년 3월, FDA는 약물의 대사 과정이 저하된 사람에서 클로피도그렐의 효과가 감소될 수 있으며, 임상적 결정을 보조하기 위하여 CYP2C19 유전형 검사를 권고하는 내용의 ‘블랙박스 경고(black-box warning)’를 삽입하여야 한다고 발표하였다(Table 2).

두 번에 걸쳐 FDA의 발표는 약물 효능의 개인화 및 유전학적 발견의 임상 적용에 대한 관심 증대를 반영하고 있다. 이 발
표로 인하여 임상의들은 근거 중심 의학을 적용하는 데 있어 정확한 정보 및 서로 상반되는 정보들에 근거하여야 하는 어려움에 처하게 되었다. 본 종합에서, 저자들은 CYP2C19 유전형 및 양성자 폼 염제제(proton pump inhibitor, PPI)의 병용투여가 심혈관질환(cardiovascular disease)을 가진 환자들에 미치는 영향에 대한 최신 연구를 서술하도록 하였 다. 저자들은 임상 진료에 활용할 수 있는 권고안을 제시하고, 주요 연구 방향에 대하여 조망하도록 하였다.

클로피도그램 대사 및 반응의 개인차

단일뉴클레오티드다형성(single nucleotide polymorphism, SNP)는 변이가 비교적 높은 DNA 서열 변이(common DNA sequence variant)로, 인구 집단 내에서 유전자의 서로 다른 대립유전자(allele)를 발생시킨다. 클로피도그램의 항혈소판 효과의 개인차를 부분적으로 설명할 수 있는 여러 변이가 보고된 바 있다. 이러한 변이중 일부는 인구 집단 내에서 대립유전자로 보아 상당히 흔한 편이며, 따라서 유전 적 선별검사의 좋은 대상으로 간주되고 있다. 그러나 이러한 변이의 효과 크기(effect size)는 크지 않은 편이며, 각 변이는 클로피도그램에 대한 개인자의 작은 부분만을 설명할 수 있을 뿐이다.

다른 많은 약물과 마찬가지로, 클로피도그램 대사물의 혈중 농도 및 항혈소판 효과는 여러 유전적 요소 및 환경적 요소의 영향을 받는다. 따라서 클로피도그램에 대한 반응에는 큰 개인차가 존재한다.14 유전자 검사가 임상적으로 유용해진다고 하더라도, 이는 임상적 결과를 변화시킬 수 있을 만큼 개인차에 대하여 충분한 예측력을 가져야 할 것이다. 또한, 검사받은 환자에서 효과적이고 상당한 근거를 갖춘 대체 약물이 개발되어야 할 것이다.
클로포디그론에 대한 반응에 영향을 미치는 유전적 요소

클로포디그론에 대한 반응의 개인차는 약물의 약물동력학(pharmacokinetics) 및 약물작용(pharmacodynamics)에 관련된 요소에 의하여 결정된다. 클로포디그론의 약물동력학(흡수와 대사)은 복용 후 24시간 동안 클로포디그론 혹은 그 대사산물의 최대 혈중 농도(Cmax) 혹은 클로포디그론 혈중 농도의 곡선을 면적(area under the curve)을 측정하여 분석한다. 클로포디그론의 약물작용(종말기로(end-organ) 효과)은 약물 복용 후 잔여 혈소판 기능을 감시하는 기법으로 측정한다. 표준적인 약물작용 측정 방식은 웅집 측정(arbregometry)이다. 이는 혈액 샘플을 ADP에 노출시킨 후, 이후 발생하는 혈소판 웅집을 통해 잔여 혈소판 반응성을 측정하는 방식이다.3) 흐름형 포스터포지방(flow cytometry) 등 세포로 개발된 방식은 잔여 ADP 수용체 반응의 직접적인 표지자이며 혈관 이온 자극 인대박질(vasodilator stimulated phosphoprotein)을 측정한다.4) 두 약물작용 측정 방식 모두 클로포디그론 복용 후의 잔여 혈소판 기능을 측정하는 것이지만, 두 방식의 기술적인 차이로 인하여 다양한 연구의 결과를 직접 비교하기는 쉽지 않다.

클로포디그론은 전구 약물(pro-drug)이며, 흡수된 후 혈소판에 작용하기 위해 활성화된 물질인 R-130964로 대사되어야 한다(Figure 1). 주로 심장지장에서 흡수된 후, 장세포(enterocyte)를 거쳐 면역산(portal circulation)으로 운반된다.5) 장세포의 내장 표면에서, p-단백질(ABCBI)에 의해 코딩된 노동적으로 클로포디그론을 심장지장 내로 되돌려 보낸다. ABCBI의 다양성은 클로포디그론의 생체 내 이용 효율(bioavailability)에 영향을 미치며, 일부 연구에서는 클로포디그론을 복용하는 ACS 환자의 예후와 관련이 있음을 발견하였다.6) 8) 장에서 흡수된 클로포디그론은 간을 통과한다. 클로포디그룬은 간에서산화되어 2-oxo-clopidogrel이 되는 두 단계를 거쳐 대사되는데(Figure 2), 이는 모두 시도크로몬(cytochrome) P450 (CYP) 계통의 효소에 의하여 이루어진다. CYP 시스템의 CYP 중동효소(isoenzyme) 사이에서 발견되는 유전자 서열의 변이는 클로포디그론의 약물동력학 및 약물작용 개인차와 관련이 있는 것으로 알려져 있다.9,10) 11) 간에서 활성화되어 있는 에스테르분해효소(esterase)는 CYP 효소와 경쟁적으로 클로포디그론을 대사하여 비활성 대사를 만들어낸다. 그 결과, 소화된 클로포디그론 중 단 5~10% 정도만이 균등적으로 R-130964로 전환된다.12)

간을 통과한 R-130964는 전신 순환계로 들어가, 혈소판 표면의 ADP 수용체에 비가역적으로 결합하여 당단백질 IIb/IIIa의 활성화를 방해한다.13) ADP 수용체는 P2RY12 유전자에 의하여 코딩되며 이 유전자의 서열 변화가 항혈전체 효과 감소와 관련되어 있다는 보고가 있었으나,14) 다른 연구에서는 그러한 효과가 관찰되지 않았다.15)

요약하면, 다양한 유전자의 단백질 산물(Figure 1 및 2)이 클로포디그론의 약물동력학 및 약물작용 특성에 영향을 미치며, 그 중 여러면에서 유전자 서열 변화가 발견된 바 있다.16) 그러한 유전자는 다음에 CYP2C19에 대한 연구가 가장 폭넓게 진행되었다.

CYP2C19#2 유전형과 클로포디그론에 대한 반응의 개인차

CYP2C19은 클로포디그론 대사에서의 핵심적인 효소로, 클로포디그론에서 2-oxo-clopidogrel 및 이 중간 대사물의 R-130964으로의 전환 과정 모두에 관여한다.17) 18) 현재까지 32개가 넘는 CYP2C19의 서로 다른 레이유전자는 발견되었으나, 대부분은 그 발전 방도가 낮은 편이다. 각각의 유전자는 DNA 서열의 변화로 규명되며, 이는 CYP2C19 유전자의 형태학적 혹은 기능적인 변화를 초래한다. CYP2C19*11 대립유전자는 유럽인에서 가장 흔하게 발견되며, 클로포디그론이 활성 대사산물로 광범위하게 전환되도록 한다.

CYP2C19*2 대립유전자는 아시아인(30%), 백인(15%) 및 흑인(17%)에서 자주 발견되는 변이형이다.19) CYP2C19*2 대립유전자는 가지고 있는 경향성 자원에서 실험한 결과, 이 대립 유전자는 부하 용량(load dose) 복용 이후 및 정상 상태(steady-state)에서 클로포디그론의 Cmax 및 24시간 동안의 곡선 면적 감소를 초래하는 것이 확인되었다.20) 21) 또한 많은 연구들이 대립유전자의 용량 의존적 효과를 보고하였으며, 21) *1/*1 동형접합자(homozygous)인 사람은 *1/*2를 가진 사람에 비하여 더 높은 클로포디그론 활성 대사산물의 혈중 농도를 가지고 있는 것으로 알려졌다.22) 간단한 자원을 대상으로 한 약물작용적 연구에서도 비슷한 결과가 보고되었는데, *2 대립유전자는
가지고 있는 사람에서 응집 측정기로 검사한 클로피도그램 복용 후 잔류 혈소판 활성(residual platelet activity, RPA)이 유의하게 높은 것으로 나타나, 결국 약물의 효능이 감소하였음을 알렸다. 기관 감소 CYP2C19 대립유전자를 가진 사람은 CYP2C19*/1/1 환자에 비해 9% 높은 RPA를 보인다는 사실을 보고한 연구도 있었다. 또한, 클로피도그램 복용 중인 자원자에서 혈소판 용적에 영향을 미치는 유전자를 추적한 유전체 연구(gene-wide association study)에서, CYP2C19*2 대립유전자와 관련된 표지자(즉, 높은 연관 봉우행(linkage disequilibrium)을 가지는) 높은 RPA의 강한 연관성이 보고된 바 있다. 그런데 이 연구에서 CYP2C19*2 보유는 클로피도그램에 대한 반응의 개인차 중 12%만큼을 설명할 수 있다는 점을 주목할 필요가 있다.

ACS로 병원에 내원한 환자 중 이전에 경피적 중세술 혹은 내과적 관리 목적으로 클로피도그램을 복용한 사람에서 관련 약물유합 연구가 시행된 바 있다. 이 연구들은 이전에 기술한 논문과 비슷한 결과를 보고하고 있는데, CYP2C19*2를 가진 사람들은 1/3/1을 가진 사람에 비해 클로피도그램에 대한 높은 RPA를 보였다고 한다. 그러나 CYP2C19*2가 전이적으로 유의한 RPA 차이와 관련을 보이고 있으나, 이러한 연구들에서 각 유전형에 따라 매우 많은 분위 범위(interquartile range)가 관찰되던 것을 상기할 필요가 있다. 즉, 이러한 연구들은 CYP2C19 유전형에 의하여 설명되지 않는 개인자가 매우 낮다는 사실을 시사하고 있다.

CYP2C19*2와 클로피도그램 복용 환자에서의 임상적 예후
클로피도그램의 약물동력학 및 약물유합에 대한 CYP2C19*2의 영향은 임상적 예후에 중요한 영향을 미칠 것으로 생각된다. EXCELOR 임상시험은 클로피도그램에 대한 높은 RPA와 높은 임상 예후의 연관성을 보고했다. 여러 연구들이 ACS 이후 클로피도그램을 복용하는 환자에서 CYP2C19 대립유전자와 심혈관질환 재발, 스탠드 내 혈전증 및 사망 등의 임상적 사건을 분석하였다.5,9,10 CYP2C19*2와 임상적 예후를 연구한 모든 논문은 음성적 결과를 보고한 것이었다. CYP2C19*2 대립유전자와 심혈관질환 재발의 발생비(odds ratio, OR)는 1.96(95% 신뢰구간[CI], 1.14~3.37)으로 계산되었고, 스탠드 내 혈전증 위험의 OR은 3.82(95% CI, 2.23~6.54)로 보고되었다.

CYP2C19*2가 높은 임상적 예후와 연관되어 있는 기전은 아마도 클로피도그램이 혈소판 용적에 미치는 영향을 감소시키는 과정 때문이라고 생각된다. 클로피도그램 복용 촉진 ACS 환자에서 혈소판 용적 측정 검사를 시행하고 이후 임상적 예후를 추적 관찰한 연구에서, CYP2C19*2 대립유전자를 가진 환자들은 클로피도그램 복용 후의 RPA가 높으며 또한 높은 예후의 발생 반도도 증가하였다. 그러나 CYP2C19*2의 예후의 관련성은 혈관 분석을 통해 RPA 수치를 보정한 후에는 관찰되지 않았다. 따라서, CYP2C19*2 대립유전자 사용에 관한 연구는 생리학적 변화와 관련되어 있을 가능성이 있기는 하나, 현재까지 알려진 근거를 통하여 추정하자면 이 대립유전자를 가진 환자에서 발생하는 높은 임상적 예후는 주로 혈소판 용적에 대한 클로피도그램의 영향을 감소시키는 과정을 거칠 것으로 생각되고 있다.

PPI와 클로피도그램
PPI와 항혈소판제의 병용 투여는 널리 처방되고 있다. 현재의 미국심장협회(American Heart Association)의 가이드라인에 의하면, Helicobacter pylori 여부 및 위장출혈(gastrointestinal hemorrhage) 위험 정도와 관계 없이, 이종 (dual) 항혈소판제를 투여받는 모든 환자에서 PPI를 처방할 것을 권장하고 있다.7 PPI는 복용 실험에서 CYP2C19를 억제하는 것으로 알려져 있으며, 판토프라졸(pantoprazole) 등 여러 PPI보다 오메포라졸 등이 더 강력하게 억제한다.8 이러한 근거에 입각하여, 클로피도그램과 PPI를 병용 투여받는 환자에서 RPA를 측정하는 연구가 다수 시행되었다. 오메포라졸과 클로피도그램을 함께 복용하는 환자들은 클로피도그램을 단독으로 복용하는 환자에 비해 RPA 수치가 유의하게 증가되어 있었고, 판토프라졸 등 다른 종류의 PPI에 대하여서는 아직 결과가 불확실하다. 클로피도그램과 판토프라졸을 복용하는 ACS 환자를 대상으로 시행한 연구 결과는 클로피도그램 단독 복용 환자와 비슷한 정도의 RPA 수치를 보고한 바 있으며,3,5 즉 이러한 상호작용은 각 경우에 특이적인 효과라는 점을 시사하고 있다.

일부 PPI가 클로피도그램 복용 후의 잔류 혈소판 기능에 영향을 미친다는 근거에도 불구하고, 이러한 상호작용이 ACS 환자에서 높은 임상적 예후를 증가시키는지 분석한 연구들은 아직 일관적인 결과를 보고하고 있지 않다. 수천 명의 환자가 포함된 후향적 분석은 PPI/클로피도그램 병용 투여와 각종 심혈관질환 및 사망의 발생에 유의한 연관성이 존재한다는 것을 보여주었다.4,5,35 그러나 이것은 PPI를 병용 투여받은 환자군에서 심혈관질환의 증가도가 더 높았다는 사실에 의하여 영향을 받았을 수 있다. 실험에 propensity matching을 통하여 이로운 효과를 보정하여, PPI 사용과 높은 임상적 예후의 연관성이 약화되는 결과가 발견되었다.4,5,35 ACS 환자에서 클로피도그램 단독 및 클로피도그램, PPI 병용 투여를 분석한 유일한 무작위 배정, 이종 링크, 위약 대조 임상시험인 COGENT 연구는, 병용 투여와 예후에 관련이 없음을 보고한 바 있다.4,4 ACS 이후 클로피도그램을 투여받은 3,627명의 환자에서, 혈관 사건
(vascular event) 혹은 사망 등 복합 결과 변수(combined end point)가 발생할 위험비(hazard ratio)는 1.02 (95% CI, 0.70~1.51)였다. PPI 복용 여부에 따른 환자들의 생존 곡선은 사실상 완전히 겹쳐 있었다. 임상적 예후를 다룬 모든 연구를 모아 분석한 메타 분석에서, 클로피도그램과 PPI를 함께 처방 받은 환자들의 생존율이 발생한 OR가 1.43 (95% CI, 1.15~1.77)으로 증가되어 있었다.26 그나다 propensity-matching을 시행한 연구 및 무작위 배정 임상시험을 분석한 메타 분석에서는, OR 1.15 (95% CI, 0.89~1.48)로 병용 투여가 예후와 관련이 없는 것으로 나타났다.27 클로피도그램 투여 이후의 RPA에 대하여 생물 특이적 효과를 보고한 약물학적 연구에 비하여, 임상적 예후를 분석한 연구들은 반도프라졸 등 새로운 PPI가 구체적 PPI인 오메프라졸 등에 비하여 다른 효과를 가진다는 것을 증명하는 못하였다.25,27

CYP2C19에 대한 유전자 검사를 일괄적으로 시행하여야 하는가?

CYP2C19*2가 CYP2C19*1에 비하여 클로피도그램 복용 후의 잔존 혈소판 기능을 증가시킨다고 생각할 충분한 근거가 알려져 있다. 또한 CYP2C19*2 유전형은 ACS 환자에서 높은 심혈관 사전의 위험을 증가시킨다고 생각되고 있다.25,26 이러한 연관성은 혈소판에 대한 클로피도그램의 영향을 감소시키는 기전을 거론한다고 알려져 있다.25

이러한 데이터와 관련하여, 환자 진료에 있어 CYP2C19 대립유전자 검사가 도움이 되는지에 대한 의문이 제기되고 있다. 유전자 검사는 검사 결과를 통합하여 위험에 노출된 환자를 신뢰성 있게 확인할 수 있으며, 치료 방법을 변경하여 균형적으로 진료에 도움이 될 때 임상적으로 유용하다고 할 수 있다. CYP2C19 유전형이 클로피도그램에 대한 환자 반응에 비교적 작은 영향만을 미치고 클로피도그램에 의한 잔존 혈소판 기능의 개인차가 크기 때문에, CYP2C19 상태를 알고 있다고 하더라도 의사가 환자 개인의 클로피도그램 반응을 예측하는 데 큰 도움이 되지는 않을 것이다. 클로피도그램에 대한 반응은 다양한 환경적, 의학적, 유전적 요소에 의하여 결정되며, 치료에 대한 순응도, 연령, 채혈량저수, 당뇨병, 약물 및 식품에 의한 간 대사 억제 등이 관련되어 있다.26 CYP2C19*2를 가지고 있는 환자도 높은 잔존 혈소판 기능을 보일 수 있으며, 마찬가지로 *2 대립유전자를 가진 환자도 낮은 RPA를 보일 수 있어, 유전자 검사의 예측력을 감소시키고 있다.

CYP2C19 유전자 검사의 임상적 효용성을 낮추는 또 다른 요소로, 심혈관질환의 치료를 위한 병용 항혈소판제 투여에 있어 클로피도그램을 대체할 수 있는 확장된 치료 방법이 아직 부재한다는 점을 들 수 있다. 클로피도그램 용량을 증가시키는 방법이 CYP2C19*2를 가진 소수의 환자에서 시도되었으나, RPA를 유의하게 변화시키는지는 확인되지 않았다.27 클로피도그
The present study aimed to investigate whether CYP2C19 variants are associated with SUA levels. The study population consisted of 101 patients with gout and 101 healthy controls. The CYP2C19 genotypes were determined using polymerase chain reaction-restriction fragment length polymorphism analysis. The SUA levels were measured using an autoanalyzer. The statistical analysis was performed using the chi-square test. The median SUA levels were significantly higher in the gout group compared to the control group (475.5 μmol/L vs. 348.2 μmol/L). The frequency of the CYP2C19*2 allele was higher in the gout group (38%) than in the control group (23%). The frequency of the CYP2C19*3 allele was higher in the control group (48%) than in the gout group (32%). The CYP2C19*1/*1 genotype was more frequent in the control group (60%) than in the gout group (42%). The results suggest that the CYP2C19 genotype may be a risk factor for gout in this study population.
Personalized Approaches to Clopidogrel Therapy
Are We There Yet?

Christopher D. Anderson, MD; Alessandro Biffi, MD; Steven M. Greenberg, MD, PhD; Jonathan Rosand, MD, MSc

Abstract: Clopidogrel is currently one of the most widely used medications in the world. Recently, the US Food and Drug Administration released a bulletin that focused on the feasibility of tailoring clopidogrel therapy. Consistent with the personalization of antihypertensive drugs, statins, and warfarin, genetic sequence variations can influence clopidogrel metabolism and its antiplatelet activity. Large studies have reported that these variants can lead to adverse clinical outcomes. The use of other drugs sometimes can alter the body’s response to clopidogrel, such as proton pump inhibitors, which can reduce the efficacy of clopidogrel. We can make some recommendations for clinical decision-making based on previous literature and the current FDA bulletin. However, testing for CYP2C19 genotype and restricting the use of proton pump inhibitors do not provide new opportunities for optimizing clopidogrel therapy.

Keywords: antiplatelet, genetics, stroke, review

(Stroke. 2010;41:2997-3002. 华中科技大学同济医学院附属协和医院神经内科 王淑楠 闵 张苏明 校)
表1 FDA为医疗保健专业人员提供的信息

<table>
<thead>
<tr>
<th>FDA</th>
<th>为医疗保健专业人员提供的信息</th>
</tr>
</thead>
</table>
| 药物代谢不佳者在患有急性冠脉综合症或经皮冠状动脉介入治疗后使用推荐剂量的波立维治疗，比CYP2C19功能正常患者表现出较高的心血管事件发生率。
| 通过检测来确定病人的CYP2C19基因型，可以帮助确定治疗方案。

氯吡格雷反应的遗传修饰因子

与药代动力学和药效学有关的机制驱动了对氯吡格雷反应的个体差异。氯吡格雷或其代谢产物的最高血液浓度（Cmax）或24小时内血液浓度曲线下面积可用来描述它的药代动力学（吸收和代谢）特性。用在使用剂量的药物后残余血小板的功能，来测定氯吡格雷的药效。标准的药效学测定方法是集合度测定，将血液样本与ADP接触，由此引起的血小板聚集提供了一个残余血小板反应性的标准。

较新的方法是应用流式细胞术来测定血管扩张剂激活磷蛋白，它是残余ADP受体活性的直接指标。两种药效测定方法都用于观察使用氯吡格雷时的残余血小板功能，尽管由于测定方法间的差异而不能直接比较来自不同研究的结果。

氯吡格雷是一种前体药物，它必须被吸收然后代谢为有活性的化合物（图1）。氯吡格雷主要在十二指肠吸收，然后经由肠细胞进入门脉循环。在肠腔表面，磷酸化糖蛋白（由ABCB1编码）将氯吡格雷泵到十二指肠内。ABCB1的多样性会影响氯吡格雷的生物利用，而在一些研究中影响ACS患者用药后的疗效。

氯吡格雷被吸收之后转入肝脏。肝脏氯吡格雷的代谢涉及两个步骤，先由细胞色素P450(CYP)系统催化，氧化为二羧基氯吡格雷，然后转换成活性代谢物R-130964（图2）。CYP系统中的多个同工酶在序列上有多样性，而此多样性与氯吡格雷代谢
动力学和药效学的个体差异有关。在这两个代谢阶段中，激活的肝酯酶与 CYP 同工酶竞争，促使氯吡格雷转化为无活性的代谢产物。因此，被吸收的氯吡格雷最终仅有5%至10%转化为 R-130964。R-130964 从肝脏转入循环系统，不可逆的与血小板表面的 ADP 受体结合，阻止糖蛋白 Ib/IIa 的激活。ADP 受体是由 P2RY12 基因编码的，在一些研究中该基因序列的变异与氯吡格雷抗血小板效应的降低有关，而在其它一些研究中则未发现二者有联系。

总之，许多编码蛋白的基因 (图 1 和 2) 与氯吡格雷的药代动力学和药效学有关，其中一些相关基因序列的变异已被鉴定出来。这些基因中，对 CYP2C19 的研究最为深入的。

CYP2C19*2 基因型与氯吡格雷反应的个体差异

CYP2C19 是氯吡格雷代谢的关键酶，在氯吡格雷氧化为二羧基氯吡格雷及进一步转化为 R-130964 的过程中都很重要。目前，已鉴定出了超过 33 个不同的 CYP2C19 等位基因；然而，许多等位基因在一般人群中都很罕见。每一种等位基因，即 DNA 序列的每一种变异，都可能导致 CYP2C19 同工酶结构和功能的变化。CYP2C19*1 等位基因在欧洲人中最常见，它能使氯吡格雷较早比例的转化为活性复合物。

CYP2C19*2 等位基因是一种常见的变异，在亚洲人、白种人、黑种人中的出现率分别为 30%、15% 和 17%。携带 CYP2C19*2 等位基因的健康志愿者，在初次负荷剂量和稳态剂量给药后，氯吡格雷的 Cmax 和 24 小时曲线下面积均出现减少。大多数研究已经证实了一种等位基因的剂量依赖效应，即纯合子 *1/*1 比 *1/*2 的携带者氯吡格雷的活性代谢产物的血液浓度高。对健康志愿者的药效学研究显示了相似的结果，携带 *2 等位基因的志愿者应用氯吡格雷后血小板活性 (RPA；用凝集度法测定) 明显增加，表明药效是降低的。在一项研究中一种功能下降的 CYP2C19 等位基因的携带者，应用氯吡格雷后的 RPA 比 CYP2C19*1/*1 患者高 9%。此外，一个关于服用氯吡格雷志愿者血小板聚集的基因组相关研究表明，高 RPA 和一种基因变异有着高度的相关性，而这种变异在遗传学上和 ADP 受体的相关存在相关性，但是，这些研究所报道的每个基因型内很宽的四分位间距，显示出超出了 CYP2C19 基因型所解释的极为显著的个体差异。

CYP2C19*2 和使用氯吡格雷患者的临床结果

CYP2C19*2 对氯吡格雷药代动力学和药效学的影响，似乎足以影响临床结果。从 EXCELSIOR 试验得到的数据表明氯吡格雷使用者较高的 RPA 和不良的临床结果相关。在多项研究中，CYP2C19 等位基因与 ACS 后使用氯吡格雷患者的心血管事件复发、支架内血栓形成和死亡等不良临床后果有关。最近一项对所有已发表的关于 CYP2C19*2 基因的研究结果进行的 meta 分析指出，每一个 CYP2C19*2 等位基因，导致心血管疾病复发风险的优势比 (OR) 为 1.96(95% 可信区间 [CI], 1.14-3.37)，造成支架内血栓形成风险的 OR 为 3.82(95% CI, 2.23-6.54)。

造成 CYP2C19*2 基因型相关不良结果的机制，可能与氯吡格雷抗血小板聚集能力下降有关，而非其它不可测因素。在一项测定 ACS 事件后使用氯吡格雷患者的血小板集合度并跟踪临床结果的研究中，CYP2C19*2 携带者使用氯吡格雷后，PRA 和不良结果发生率均有所升高。但在控制 PRA 后的回归分析
中，没有发现 CYP2C19*2 基因和不良结果间存在显著联系。因此，CYP2C19*2 等位基因引起的不可测量的生理变化，理论上可能影响结果，但现有证据表明，这个等位基因的携带者使用氯吡格雷后不良结果发生风险的增加主要还是由氯吡格雷抗血小板作用受损介导的。

质子泵抑制剂 (PPIs) 和氯吡格雷

目前，PPIs 被广泛与抗血小板治疗药物联合使用。美国心脏协会建议，所有接受双重抗血小板治疗的患者，不论是否存在幽门螺旋杆菌的感染或胃肠道出血的危险 [20]，都应使用一种 PPI。在体外研究中，PPIs 是 CYP2C19 的抑制剂，与新一代的 PPIs 如泮托拉唑相比，奥美拉唑有更强的抑制作用 [21]。基于这一证据，几项研究已经评估了同时应用氯吡格雷和一种 PPIs 对 RPA 的影响。结果表明，同时使用氯吡格雷和奥美拉唑与单独使用氯吡格雷相比，患者的 RPA 有明显的升高 [22]。其他的 PPIs，尤其是泮托拉唑的结果尚不明确。其中一项研究表明，ACS 患者联合应用氯吡格雷和泮托拉唑，与单独应用氯吡格雷的患者有相似的 RPA [23]。

尽管证据表明，至少有一些 PPIs 会影响使用氯吡格雷患者的残余血小板功能，但是那些寻求这种影响和 ACS 患者不良后果之间联系的研究，其结果是相互矛盾的。涉及数千个样本的多项回顾性分析证明 PPI/氯吡格雷共同使用与不良的心血管结局和死亡有明显的相关性 [24,25]。然而，使用 PPIs 的患者病情往往更严重，可能使上述结果出现混杂。事实上，使用倾向匹配控制了这种混杂因素之后，PPI 和不良结果之间的联系更明显了 [22,23]。COGENT 试验，是目前唯一以单独应用氯吡格雷或合用 PPI 的 ACS 患者为研究对象的随机、双盲、安慰剂对照试验。这一试验表明两者合用与不良结果之间没有关联 [24]。ACS 后使用氯吡格雷的 3627 名受试者，心血管事件和死亡的混合风险比 (hazard ratio) 为 1.02 (95% CI, 0.70-1.51)。服用和未服用 PPIs 患者的生存曲线完全没有重叠。在对所有有效结果进行的 meta 分析中，患者同时服用氯吡格雷和一种 PPI 出现不良结果的风险 OR 为 1.43 (95% CI, 1.15-1.77) [23]。对倾向匹配的随机试验进行 meta 分析，OR 为 1.15 (95% CI, 0.89-1.48)，表明同时使用 PPI 和不良结果无关联 [23]。与其他药效学研究相反，对于氯吡格雷合用后不良结果的分析并没有证明泮托拉唑和其他新的 PPIs 与那些老的 PPIs 如奥美拉唑有什么不同 [24,25,26,27]。

患者需要常规接受 PPIs 和氯吡格雷的联合治疗吗？

虽然氯吡格雷和 PPIs 联合用药可能会降低抗血小板作用，但联合用药与临床结果之间的联系还远远没有弄清楚。大量回顾性研究似乎发现了某种联系，但是几项倾向匹配研究和一项随机对照试验都没有证实这一发现，反倒提示了先前研究中存在的混杂因素。此外，预防胃酸过多的其他治疗法的作用还不明确。虽然 FDA 最新提示 (表 1) 表明 H2 受体
阻滞剂并不抑制 CYP2C19，但是其在氯吡格雷双重抗血小板治疗中的应用目前还不为指南所推荐[20]。在近期一项针对 2777 名有上消化道出血史的患者和 5532 名对照者的病例对照试验中，对使用非甾体类抗炎药、阿司匹林、或者氯吡格雷的患者采用PPI、H2受体阻断剂或硝酸盐预防胃酸过度分泌，接受氯吡格雷治疗的患者中只有同时使用PPIs者胃肠道出血风险有显著降低[29]。此外，使用氯吡格雷的患者停用PPIs可能会导致意想不到的胃肠道出血，这与二者合用可能导致的潜在不良心血管后果的增加相比，哪一个更为有害尚未得到有效权衡[27]。建议根据现有证据，对患者进行CYP2C19基因型的检测似乎对氯吡格雷使用的临床决策意义有限（表3）。附加试验对残余血小板功能进行分析好像更为有用，因为残余血小板功能是环境和遗传因素最终影响氯吡格雷疗效的共同通路。此外，需要更多关于氯吡格雷剂量提高策略以及其他抗血小板药物的研究以使CYP2C19基因检测有朝一日成为对心血管医生有用的重要辅助措施。在特定情况下，其他疗法可以替代氯吡格雷用于卒中的二级预防。例如，当单独使用氯吡格雷的脑血管病患者因为CYP2C19*2等位基因的存在而需要重新考虑阿司匹林或更换其他抗血小板药物时，可潜在受益于CYP2C19基因型的研究。我们注意到，还没有研究来探讨这种策略的效果。

结论氯吡格雷是一种已证实对预防心脑血管事件复发有效的常见处方药。我们当然希望在使用这种药物时，保证对每一个患者都能达到预期的效果。然而鉴于目前的知识水平，CYP2C19基因型的测定和限制联合使用质子泵抑制剂这两个方案还无法给优化治疗提供新的契机。

参考文献

