Carotid artery stenting (CAS) has not been shown to be as safe as carotid endarterectomy for treatment of symptomatic extracranial carotid artery stenosis in the immediate postoperative period. However, beyond the postoperative period, data continues to support a role for CAS in selected patients. A large systematic review of 206 individual studies (54,713 total patients) undergoing CAS found the cumulative 30-day risk of stroke or death to be 7.6% in symptomatic and 3.3% in asymptomatic patients. Factors associated with increased risk of adverse outcomes in both groups were age >75 years (relative risk [RR] 1.88), hypertension (RR 1.86), and coronary artery disease (RR 1.41). Use of embolic protection devices significantly reduced the risk of stroke or death (RR 0.57). Although reports of adverse events vary widely in the literature, there has been a trend toward overall reduction in risk over the past several years, suggesting that use of embolic protection devices, careful patient selection, and increasing operator experience may be important factors in minimizing risk. The vast majority of these data (97%) are outside the standards of a randomized controlled trial (RCT), emphasizing the need for data from the trials that are currently enrolling patients. Among the larger studies currently enrolling patients are the Carotid Stenting for High Risk Surgical Patients (CHOICE, Abbott Vascular, target 5000 patients), Asymptomatic Carotid Surgery Trial-2 (ACST-2, target 5000 patients), and Stent-Protected Angioplasty in Asymptomatic Carotid Artery Stenosis versus Endarterectomy trial (SPACE-2, target 3640 patients).

This year, we received our first update from the Carotid Revascularization Endarterectomy versus Stenting Trial (CREST), the largest RCT to date comparing the perioperative safety and long-term (4 years) efficacy of CAS versus carotid endarterectomy. Data from the lead-in phase demonstrated an overall 30-day stroke and death rate of 4.4%. Restenosis rates in the lead-in phase were reported to be 13% with 1.2% of patients requiring repeat revascularization by 1-year follow-up. These numbers compare to restenosis rates of 10.7% and 4.6% in patients undergoing CAS and carotid endarterectomy, respectively, in the SPACE trial and 19% of CAS patients in the Stenting and Angioplasty with Protection in Patients at High Risk of Endarterectomy (SAPPHIRE) study. The Carotid Revascularization Using Endarterectomy or Stenting Systems (CaRESS) trial, a prospective, nonrandomized comparative cohort study reported no difference in rates of death, nonfatal stroke, and myocardial infarction (MI) at 4 years postprocedure (27% versus 22%, carotid endarterectomy versus CAS, $P=0.27$). However, consistent with data from other studies, restenosis rates were higher in the CAS group ($P=0.014$). Thirty-day results from 4007 patients enrolled in the SAPPHIRE trial were published demonstrating a 4.4% rate of all MI, stroke, and death.

Still one of the most intriguing and controversial subjects is that of CAS in octogenarians. A single-center retrospective study of 24 octogenarians undergoing CAS reported a 30-day morbidity and mortality of 4.2%. Prospectively acquired data pooled from 3 centers demonstrated no difference in 30-day rates of death, transient ischemic attack, or MI between 2 cohorts selected by age (mean age 69.9 and 83.5 years, respectively). Touze et al, however, pooled data from 22 individual studies (14,184 patients >75 years of age) and found that patients in the older subgroup had a RR of 1.88 ($P<0.01$) for death, MI, and stroke. These conflicting findings again emphasize the need for large randomized cohorts including patients of advanced age. The cumulative data suggest that excellent outcomes are viable with CAS performed by seasoned experts in selected patients.

Intracranial Artery Angioplasty and Stenting

Management of symptomatic intracranial atherosclerotic disease (ICAD) remains controversial. One of the largest prospective single-center studies to date of 111 patients demonstrated no difference in favorable outcome (symptom resolution, no new ischemic events, and modified Rankin Scale [mRS] score of ≤ 3) between optimal medical therapy (antplatelet agents, statins, risk factor modification) and angioplasty and stenting for treatment of symptomatic intracranial atherosclerotic disease. Data continues to accumulate demonstrating high restenosis rates (up to 50%) in the poststenting period using the Wingspan stent. Furthermore, there appears to be a subset of target lesions that are refractory to multiple treatments. In comparison, a large single-center study of 113 patients treated with balloon-mounted stents demonstrated stroke or transient ischemic attack in 6.74% and a restenosis rate of 20% during the follow-up period of 29±16 months. Diabetes and hyperlipidemia were associated with the incidence of restenosis. As we await the results of the randomized, multicenter National Institutes of Health (NIH)-funded trial on the use of the
Wingspan stent (Boston Scientific) for the treatment of ICAD (stenosing versus aggressive medical management for preventing recurrent stroke in intracranial stenosis) and the VISSIT trial (Vitesse Intracranial Stent Study for Ischemic Therapy, Micrus Endovascular, see illustrative case in the Figure), we have a systematic review pooled data from 31 studies (1177 procedures) using angioplasty and stenting for treatment of symptomatic, high-grade intracranial artery stenosis. High initial rates of technical success were offset by variable rates of periprocedural adverse events (minor and major stroke, death, 0% to 50%). Complication rates were higher in the posterior versus anterior circulation (12.1%, versus 6.6%, \(P < 0.01 \)), and restenosis rates (>50%) were higher using self-expanding stents versus balloon-mounted stents (17.4 versus 13.8, \(P < 0.001 \)). However, the lack of standardized treatment protocols, study designs, and imaging techniques limits interpretation of these studies. It was therefore under careful consideration that standardization protocols for interventional treatment of ICAD were developed this year to enable comparison among comparable datasets in the future. Until the RCT data emerges, angioplasty and stenting for treatment of symptomatic ICAD should be preferentially performed on carefully selected patients in high-volume centers.

Acute Ischemic Stroke

Devices and techniques for the interventional treatment of acute ischemic stroke (AIS) are evolving rapidly, making the execution of large RCTs difficult as the enrollment periods often far exceed the technology development cycle. Large trials sponsored by National Institute of Neurological Disorders and Stroke (NINDS), both the Interventional Management of Stroke-III (IMSIII) and MR and Recanalization of Stroke Clots Using Embolectomy (MR RESCUE), are cognizant of this point and have been revised to include newer device technology that have achieved FDA approval. The community awaits the data from these large RCTs, but in the interim we rely on a lower level of evidence to guide interventional treatment of AIS. This year in the stroke literature, we continued to learn about existing techniques and

![Figure](image-url)
have been excited about new technologies, in particular the growing body of evidence to support the use of self-expanding stents for recanalization.

One of the oldest yet simplest techniques in the neuroendovascular armamentarium has been the local delivery of thrombolytics through a microcatheter placed near the occlusive thrombus (IA thrombolysis). A single-center, prospective, nonrandomized registry demonstrated that the combination of a bridging dose of IV tissue plasminogen activator (tPA) (0.6 mg/kg) and IA tPA (0.3 mg/kg) with adjuvant mechanical procedures if needed (snare or balloon angioplasty) led to an 87% recanalization rate in 53 patients, as evidenced by imaging or transcranial Doppler 24 hours after treatment. The control arm that received full dose IV tPA (107 patients) had significantly less recanalization (52%). Functional recovery at 90 days (mRS 0−2) was 57% in the combined IA-IV group as compared to 44% in the IV group, which was not statistically different. Interestingly, clinical outcome was correlated to both recanalization and time to recanalization; however, perhaps the enrollment was too small to realize improvement in functional outcome with the combined IA-IV therapy. Unlike the Emergency Management of Stroke Bridging Trial, mortality was the same in both groups and the IA-IV group experienced less symptomatic intracranial hemorrhage (European Cooperative Acute Stroke Study criteria) than the IV only group (9% versus 11%). In direct contradiction, the MR Stroke Study Group reported in their retrospective analysis of 645 patients that receiving IA delivery of a lytic with or without adjunctive IV tPA was an independent predictor of increased rates of symptomatic intracranial hemorrhage versus IV tPA (odds ratio [OR] 3.4, 95% CI 1.2 to 10.0, P<0.05). The analysis of a small number of patients receiving IA lytic (n=74) or IA-IV treatment (n=35) was hindered by variations of the IA thrombolysis protocol. Nonetheless, the investigators guess that high concentrations of thrombolytics drugs delivered locally to an intracranial vessel may lead to augmented activation of proteases at the blood–brain barrier.

Experience and data analysis of mechanical embolectomy for AIS treatment has expanded in 2009. One of the largest criticisms of the revolutionary Mechanical Embolectomy in Acute Ischemic Stroke trials (MERCI and Multi-MERCI) was that the 90-day mortality was higher than the control arm of the Prolyse in Acute Cerebral Thromboembolism II trial (PROACT II), which was the historic control that evaluated IA thrombolysis with recombinant prourokinase. However, because the MERCI trials were not limited to middle cerebral artery occlusions and in the end enrolled older patients with a more severe baseline stroke score than PROACT II, comparisons between the trials cannot be made. This year the Merci and Multi Merci investigators parsed their data for patients who would have been eligible for enrollment in PROACT II. They were able to conclude that mortality was indeed explained by baseline stroke characteristics and trial design, and did not differ between the relevant patients in the MERCI trials and PROACT II control arm. Moreover, embolectomy produced similar functional outcome results in this subset of MERCI/multi-MERCI patients as compared to the PROACT II treatment arm. It is important to mention that adjusted comparisons were hampered by the failure to obtain access to the individual patient level data from PROACT II.

The role of imaging in patient selection for interventional treatment has expanded in 2009 regarding the endovascular treatment of AIS was the use of self-expanding stents for flow restoration. The use of stents in AIS refractory to other endovascular treatments was applied in 2 small, retrospective series this year and achieved between 92% to 100% recanalization rates. The first prospective FDA approved trial, Stent-Assisted Recanalization in Acute Ischemic Stroke, demonstrated in 20 patients a 100% recanalization rate, defined as TIMI 2 to 3 flow evidenced by arteriography. There was only 1 (5%) symptomatic hemorrhage and 1 month mRS was 0 or 1 in 45% of the treated patients. The disadvantage of this approach is the implantation of a permanent vascular prosthesis and the necessity of dual-antiplatelet therapy. Using the advantages of the stent-in-stroke concept along with unique solutions, such as temporary stent-bypass with a retrievable device, may provide an optimal interventional treatment.
functional outcome (mRS \(\leq 2\)) after 90 days was recorded in 46% of the patients. Symptomatic intracerebral hemorrhage and mortality in this group were 10% and 22%, respectively. Statistically significant predictors of good functional outcome were age (OR 0.96, 95% CI 0.93 to 0.99), time to treatment (OR 1.11, 95% CI 1.01 to 1.21), and successful recanalization (OR 3.21, 95% CI 1.21 to 8.51). These data suggested not only that patients can be successfully treated at much later time points than most prior studies have permitted, but also that proper patient selection by penumbral imaging at all time points may improve functional neurological outcomes. At this juncture, the latter point is still controversial requiring further study.

Aneurysms

In 2009 we had another update from the International Subarachnoid Aneurysm Trial (ISAT), a large RCT designed to compare clinical outcomes for patients having ruptured aneurysms treated by endovascular coiling or surgical clipping. The 5-year clinical data established decreased mortality in the endovascular group versus the surgical group (OR 0.75, 95% CI 0.58 to 0.97, \(P = 0.03\)). These latest data with more than 8000 person-years of follow-up in each arm demonstrated that 1.2% and 0.4% of aneurysms treated by coiling and clipping rebled after the first year, respectively (intent-to-treat analysis, \(P = 0.06\)). Although late rebleeding has been shown to be higher in the endovascular treatment arm as compared to the surgery group by the actual treatment received, the risk remained small and there was no difference in death related to rebleeding between the treatment groups. Another multicenter, non–RCT in which 1036 aneurysms in 929 patients were treated with bare embolic coils was available in 2009. Of the 804 patients with ruptured aneurysms, the risk of rebleeding up to 10 years after coiling was 0.6%. In both ruptured and unruptured aneurysms, the retreatment rate was 6%. In a single-center experience that followed 270 patients over a mean period of 22 months after receiving coil embolization for ruptured aneurysms, 2.1% of these aneurysms rebled. Most rehemorrhages in this study occurred within 30 days of coiling and rebleeding was significantly associated with initial incomplete coil embolization. In a systematic literature review of studies reporting data on endovascular aneurysm treatment, it was found in 8161 coiled aneurysms that one-fifth showed reopening over time of which half were retreated. Risk factors for recanalization were aneurysm size of \(> 10 \text{ mm}\) and posterior location. These data taken together further solidified endovascular coil embolization as the gold standard therapy for most intracranial aneurysms, and this approach has been evaluated by multiple centers to expand the treatment to middle cerebral artery aneurysms, small \(< 7 \text{ mm}\) unruptured aneurysms, and very small \(\leq 3 \text{ mm}\) aneurysms. However, improvement to the durability of coil embolization has remained the impetus of new device technology.

“Bioactive” coils, meaning that a resorbable polymer loaded into or onto the metallic coil, were introduced in an effort to accelerate the healing response. Two single-center, nonrandomized studies reported their clinical data on the Cerecyte coil system (Micrus Endovascular). Both investigations had similar numbers of patients and matched the analysis retrospectively to a group of patients receiving bare metallic coils only. The polyglycolic acid loaded system was found to offer higher rates of aneurysm obliteration at follow-up in 1 study, and this nonsignificant trend was observed in the other. The latter study observed that packing densities remained the same for the bioactive system, thus reinforcing the concept that this enhanced coil system offers similar mechanical performance as the bare devices. A large RCT to evaluate the Cerecyte coil system has completed enrollment, and we expect the results to be available next year.

For over a decade, balloon-remodeling technique has been used as a simple measure to embolize wide-neck brain aneurysms. The Analysis of Treatment by Endovascular approach of Nonruptured Aneurysms (ATENA), a multicenter nonrandomized prospective study, sought to compare the risks associated with the balloon-assisted coiling (\(n = 222\)) as compared to traditional coil embolization (\(n = 325\)). There were no differences in procedural-related complications, permanent morbidity, or mortality between the groups. These data support the concept that balloon-assisted coil embolization is a safe technique; however, the question remains that whether this approach, which is often used for wide-neck complex aneurysms, will provide for durable coil embolization. In a single-center study limited to aneurysm embolization of 114 middle cerebral artery aneurysms, complex anatomy requiring the use of balloon-remodeling was significantly related to recanalization.

The growing experience to use low-profile, microcatheter-delivered, self-expanding stents continued to generate enormous excitement. The hope remained that stent-assisted coil embolization (SAC) may improve long-term durability of the endovascular approach. A recent single-center experience in 107 wide-neck aneurysms in which SAC was performed showed that the procedure-related morbidity and mortality was 5.6 and 0.9%, respectively. The authors reported that favorable clinical outcome (mRS score 0 to 2) was achieved in 90.7% of the patients after a mean of 47 months. Angiography performed in nearly half of the patients after a mean of 37 months demonstrated a recanalization rate of 13.7%. The largest series to date (142 aneurysms) reported 2.8% morbidity and 2% mortality associated with use of latest neurovascular stent technology. We continue to await follow-up data from this multicenter study to see whether the presence of the stent will reduce recanalization rates. An outstanding question remained regarding the use of SAC in acutely ruptured aneurysms, because the deployment of these devices requires antiplatelet therapy that is disadvantageous in the setting of subarachnoid hemorrhage. A multicenter, nonrandomized study in Finland reported their experience in using SAC in 61 patients with ruptured aneurysms. The technical success rate was 72% and complications related to SAC occurred in 21%. The majority of complications were the result of thromboembolisms. Over a mean follow-up period of 1 year, 69% of the patients had a good outcome, meaning the Glasgow outcome scores were 4 or 5. SAC in the setting of acutely ruptured aneurysms requires more extensive study at
Arteriovenous Malformations

A single-center investigation of n-butyl-2-cyanoacrylate (nBCA) embolization in 202 brain arteriovenous malformations (bAVMs) became available this year.\(^{53}\) Permanent morbidity as a result of embolization was 2.5\% over a mean follow-up period of 43 months. Using these data from 377 embolization procedures, the investigators were able to devise a new grading system that may prognosticate embolization risks with nBCA. Embolization with the relatively new material, ethylene-vinyl alcohol (Onyx, eV3 Neurovascular), was further investigated this year. This nonadhesive polymer injected in solution with an organic solvent (dimethyl sulfoxide, DMSO) that evaporates leading to Onyx precipitation, was approved by the US FDA in 2005 for embolization of bAVMs. French investigators reported their prospective multicenter study of Onyx in 50 bAVMs during 116 embolization sessions.\(^{54}\) An additional 33 sessions involved nBCA. After 1 month, the morbidity and mortality of the embolization was 8\% and 2\%, respectively. More than 60\% occlusion of the bAVMs by volume was attained in 73\% of the cases. Two retrospective single-center studies reported a median reduction in bAVM volume of 75\% following Onyx embolization in 123 patients with periprocedural morbidity rates from 12.2\% to 19.5\%.\(^{55,56}\) The reported obliteration rates by Onyx embolization alone ranged from 8\% to 24\%-54-56; however, one study found a 50\% recanalization rate.\(^{55}\) A histopathologic analysis of excised bAVMs was published in 2009 that allowed for detailed comparisons between embolization with nBCA (n = 10) and Onyx (n = 22).\(^{57}\) Histology revealed vascular or perivascular inflammation in 90\% of cases in both groups. Both foreign body giant cell infiltration and recanalization were seen in Onyx embolized vessels and not in the nBCA group. This result might have been impacted by the time difference from embolization to surgical resection, which was 8 and 18 days in the nBCA and Onyx groups, respectively. Although the authors reported deeper penetration of the Onyx material into the bAVM nidus as compared to nBCA, these data are strongly related to both material properties and technique. Therefore, this result requires validation in a multicenter study. Onyx definitely has expanded the endovascular approach to bAVMs; however, increased complete obliteration rates harbor higher risk of bleeding, which is likely the result of venous outflow obstruction. We expect that as experience with Onyx grows proper selection of bAVMs for and techniques of Onyx embolization will lead to decreased complications.

Disclosures

None.

References

KEY WORDS: carotid artery • neuroradiology • advances
Стентирование сонных артерий (ССА) не является таким же безопасным методом лечения симптомного экстракранального стеноза сонных артерий в раннем послеоперационном периоде, как каротидная эндартерэктомия. Однако, несмотря на осложнения послеоперационного периода, существующие данные поддерживают эффективность проведение ССА у отдельных категорий пациентов. В результате большого систематического обзора 206 отдельных исследований (всего 54 713 пациентов), посвященных изучению эффективности ССА, определили, что совокупный 30-дневный риск развития инсульта или летального исхода составляет 3,5% при проведении каротидной эндартерэктомии [3], а также 9% при проведении ССА в исследовании Stenting and Angioplasty with Protection Interventional Neuroradiology (SAPPHIRE) [4]. Результаты испытания Carotid Revascularization Using Endarterectomy or Stenting Systems (CaRESS) [5], в котором приняли участие 4007 пациентов, свидетельствуют о том, что совокупный 30-дневный риск развития ИМ, инсульта и летального исхода составил 4,4% [6, 7].

Еще одним из наиболее интригующих и спорных вопросов является проведение ССА у пациентов 80 лет и старше. Согласно результатам одноцентрового ретроспективного исследования с участием 24 восьмидесятипятилетних пациентов, которым выполнили ССА, уровень 30-дневной заболеваемости инсультом и летальности составил 4,2% [8]. В обобщении продемонстрировали, что у пациентов старше 75 лет риск развития ИМ и инсульта был выше в группе ССА [p=0,014]. Опубликованные результаты испытаний SAPPHIRE, в котором приняли участие 4007 пациентов, свидетельствуют о том, что совокупный 30-дневный риск развития ИМ, инсульта и летального исхода составил 4,4% [6, 7].

© American Heart Association, Inc., 2010

Адрес для корреспонденции: Matthew J. Gounis, PhD, Department of Radiology and New England Center for Stroke Research, University of Massachusetts Medical School, 55 Lake Avenue N, SA-107R, Worcester, MA. E-mail: matthew.gounis@umassmed.edu

Ключевые слова: сонная артерия (carotid artery), нейрорадиология (neuroradiology), достижения (advances)
мизированных групп пациентов, в т. ч. включения пациентов пожилого возраста. Обобщенные данные позволяют предположить, что при проведении ССА опытными специалистами возможны благоприятные исходы у тщательно отобранных пациентов.

АНГИОПЛАСТИКА И СТЕНТИРОВАНИЕ ВНУТРИЧЕРЕПНЫХ АРТЕРИЙ

Лечение симптомного атеросклеротического поражения внутричерепных сосудов вызывает много споров. Результаты одного из крупнейших на сегодняшний день ретроспективных одноцентровых исследований с участием 111 пациентов продемонстрировали отсутствие различий в частоте развития благоприятного исхода (рекессии симптомов, отсутствии новых ишемических событий и оценке по модифицированной шкале Рэнкина [МШР] менее 3 баллов) при проведении оптимальной медикаментозной терапии (антиагрегантами, статинами, модификации факторов риска) и выполнении ангиопластики и стентирования для лечения симптомного атеросклеротического поражения внутричерепных сосудов [11]. Накапливающиеся данные по-прежнему демонстрируют высокую частоту развития рестеноза (до 50%) в послеоперационном периоде при использовании стентов Wingspan [12]. Кроме того, возможно развитие поражений, рефрактерных к комплексному лечению. Для сравнения, результаты большого одноцентрового исследования с участием 113 пациентов, которым устанавливали баллон-расширимые стенты, продемонстрировали, что в период последующих наблюдений средней продолжительностью 29±16 месяцев частота развития инсульта или ТИА составила 6,74%, а частота развития рестеноза 20% [13]. Наличие сахарного диабета и гиперлипидемии было ассоциировано с развитием рестеноза. Несмотря на отсутствие результатов рандомизированного многоцентрового испытания, финансируемого National Institutes of Health (NIH), по использованию стентов Wingspan (Boston Scientific) для лечения атеросклеротического поражения внутричерепных сосудов (сравнительный анализ результатов стентирования внутричерепных артерий и интенсивного медикаментозного лечения, направленного на предотвращение развития повторного инсульта) и испытания VISSIT (Vitesse Intracranial Stent Study for Ischemic Therapy, Mictus Endovascular, см. показательный случай на рисунке; см. на цв. вклейке), существуют данные систематического обзора результатов 31 исследования (1177 процедур) по изучению эффективности ангиопластики и стентирования при лечении выраженных симптоматических стенозов внутричерепных артерий [14]. Высокая первоначальная частота успешного лечения была компенсирована различными показателями частоты развития периперационных нежелательных явлений (малых и обширных инсультов, летальных исходов в целом с частотой от 0% до 50%). Частота развития осложнений была выше при проведении вмешательства на артериях вертебрально-базилярной системы, чем при вмешательстве на сосудах каротидной системы (12,1 и 6,6% соответственно, р<0,01), а частота развития рестеноза (п<0,001). Однако отсутствие стандартизированных протоколов лечения, дизайна исследования и методов визуализации ограничивает интерпретацию результатов этих испытаний. Именно поэтому в этом году большое внимание уделено разработке стандартизированных протоколов интервенционного лечения атеросклеротического поражения внутричерепных сосудов с целью сравнения сопоставимых наборов данных в будущем [15]. Согласно данным РЦИ, ангиопластику и стентирование при лечении симптомного атеросклеротического поражения внутричерепных сосудов необходимо проводить преимущественно у тщательно отобранных пациентов в специализированных центрах.

ОСТРЫЙ ИШЕМИЧЕСКИЙ ИНСУЛЬТ

Аппаратура и методы интервенционного лечения острого ишемического инсульта (ОИИ) быстrored развитым, что затрудняет проведение РКИ, т. к. периоды набора пациентов в исследование зачастую намного превышают цикл разработки технологий. При проведении крупных испытаний под эгидой Национального института неврологических заболеваний и инсульта (NINDS), таких как Interventional Management of Stroke-III (IMSIII) и MR and Recanalization of Stroke Clots Using Embolectomy (MR RESCUE), учитывали этот момент, и их дизайн был пересмотрен с целью включения новейших технологий, утвержденных FDA (US Food and Drug Administration). Медицинское сообщество ожидает результатов этих крупных РКИ, а в промежуточный период мы рассчитываем на появление доказательств более низкого уровня для разработки руководства по интервенционному лечению ОИИ. В этом году мы продолжали изучать существующие методы лечения инсульта, опубликованные в литературе и были взволнованы появлением новых технологий, в частии, басающим числом доказательств, подтверждающих эффективность использования саморасширяющихся стентов для проведения реваскуляризации.

Одним из старейших и простых методов в арсенале нейроэндоваскулярного лечения было местное введение тромболитических препаратов через микрокатетер, установленный рядом с окклюзирующим тромбом (внутриarterиальный тромболизис). Анализ результатов одноцентрового проспективного нерандомизированного реестра показал, что при сочетании внутривенного (в/в) введения тканевого активатора плазминогена (ТАП) в дозе 0,6 мг/кг и внутриартериального (в/в) введения тканевого активатора плазминогена (ТАП) в дозе 0,3 мг/кг в сочетании с выполнением повторного инсульта, опубликованные в литературе и были взволнованы появлением новых технологий, в частии, басающим числом доказательств, подтверждающих эффективность использования саморасширяющихся стентов для проведения реваскуляризации.
рольной группе пациентов, которым вводили полную дозу ТАП внутривенно (107 пациентов), частота реканализации была значительно меньше и составила 52%. Функциональное восстановление через 90 дней (оценка по МШР менее 2 баллов) наблюдалось в 57% случаев в группе комбинированного лечения и в 44% в группе в/в введения ТАП, причем различие не было статистически значимым. Интересно отметить, что клинические исходы коррелировали с фактом достижения реканализации и временем, прошедшим от начала инсульта до этого момента. Однако возможно, что размер выборки в исследовании был слишком мал для демонстрации улучшения функциональных исходов при комбинированном лечении. В испытании Emergency Management of Stroke Bridging Trial уровень летальности был одинаковым в обеих группах, а в группе комбинированного введения ТАП уже развивались симптомы внутричерепных кровоизлияний (согласно критериям European Cooperative Acute Stroke Study) по сравнению с группой только в/в введения ТАП (9 и 11% соответственно). В прямом противоречии с этими данными исследовательская группа MR Stroke Study Group сообщила о результатах своего ретросpektивного анализа данных 645 пациентов, согласно которым в/а введение тромболитика с или без дополнительного в/в введения ТАП было незначительным прогностическим фактором повышения частоты развития симптомов внутричерепных кровоизлияний по сравнению с в/в введением ТАП (отношение шансов [ОШ]=3,4, 95% доверительный интервал [ДИ] от 1,2 до 10,0, p<0,05) [17]. Анализ данных малого числа пациентов, получавших тромболитики в/а (n=74) или комбинированную в/в и в/а) тромболитическую терапию (n=35), был затруднен в связи с различиями в протоколе проведения внутриартериального тромболизиса. Тем не менее исследователи предположили, что высокие концентрации тромболитических препаратов при введении локально во внутричерепной сосуд могут привести к повышенной активации протеза гематоэнцефалического барьера.

Опыт и анализ результатов проведения механической эмболэктомии при лечении ОИИ претерпели изменения в 2009 г. Одним из крупнейших критических аргументов в отношении результатов революционных испытаний Mechanical Embolectomy in Acute Ischemic Stroke (MERCI и Multi-MERCI) было повышение уровня 90-дневной летальности по сравнению с контрольной группой в испытании Prolyse in Acute Cerebral Thromboembolism II (PROACT II), которое было своего рода контрольным, оценивающим эффективность проведения внутриартериального тромболизиса с использованием рекомбинантовой пророкиназы. Однако поскольку испытания MERCI не были ограничены проведением вмешательства при окклюзии средней мозговой артерии и на конечном этапе в них зачисляли пожилых пациентов с исходно более тяжелым инсультом, чем в испытании PROACT II, сопоставление результатов испытаний невозможно. В этом году исследователи MERCI и Multi-MERCI проанализировали данные пациентов, которые имели бы право быть включенными в испытание PROACT II [18]. Они сделали вывод, что повышенная летальность действительно была связана с исходной тяжестью инсульта и дизайном исследования и не различалась у соответствующих пациентов в испытаниях MERCI и группой контроля в испытании PROACT II. Кроме того, проведение эмболэктомии приводило к аналогичным функциональным исходам в контрольной подгруппе пациентов исследований MERCI/Multi-MERCI по сравнению с пациентами группы контроля в испытании PROACT II. Важно отметить, что проведение скрупо-"

Результаты испытания Penumbra Pivotal Stroke Trial были опубликованы в 2009 г. [19]. Как сообщили в прошлом году на Международной конференции по инсульту (International Stroke Conference), при использовании предложенного в этом испытании устройства повышается частота реканализации "целевых сосудов" (определенная как тромболизис при инфаркте миокарда [TIMI] от 2 до 3 на участке первичной окклюзии). Обращает на себя внимание тот факт, что частота реканализации целевых сосудов (более 80%) и безопасность проведения вмешательства (менее 3% случаев серьезных периоперационных неблагоприятных событий) были связаны с использованием системы Penumbra aspiration system. Частота развития симптоматического внутричерепного кровоизлияния (11,2%) была выше, чем в испытаниях MERCI, но считалась приемлемой в свете вышеуказанных преимуществ. Однако частота развития благоприятных функциональных исходов (оценка по МШР менее 2 баллов через 90 дней) была на удивление низкой и составляла 25% (29% у пациентов с успешной реканализацией), что ставит под сомнение роль реканализации в существенном функциональном восстановлении. В первоначальном лабораторном и клиническом опыте работы с этим устройством (не опубликовано, 2009), мы подтвердили его простоту в использовании и отличный периопрофиль безопасности [20–22]. Важно отметить, что проведение такого вмешательства требовало выбора малого числа пациентов, зачислявшихся в испытаниях MERCI и Multi-MERCI, но считалось приемлемой в свете вышеупомянутых преимуществ.

Со времени опубликования "Достижений в интервенционной нейrorадиологии" [21] в прошлом году [23], пожалуй, самым грандиозным достижением в эндо-васкулярном лечении ОИИ в 2009 г. является использование саморасширяющихся стентов для восстановления...
лении кровотока. В двух небольших ретроспективных исследованиях выполняли стентирование при ОИИ, рефрактерном к другим видам эндоваскулярного лечения. При этом частота реканализации составляла от 92 до 100% [24, 25]. Результаты первого, одобренного FDA ретроспективного испытания Stent-Assisted Recanalization in Acute Ischemic Stroke продемонстрировали 100%-ную частоту реканализации у 20 пациентов [26], определенную как ТИМ 2–3 по результатам артериографии. Был только 1 (5%) случай развития симптомного кровоизлияния, а у 45% пролеченных пациентов через месяц после вмешательства оценка по МШР составила от 0 до 1 балла. Недостатком этого метода является имплантация постоянных устройств по МШР составила от 0 до 1 балла. Недостатком этого метода является имплантация постоянных сосудистых протезов и необходимость назначения двойной антиагрегантной терапии. Использование преимуществ концепции стент-при-инсульте наряду с уникальными решениями, такими как временный стент-шунт с извлекаемым устройством [27], могут обеспечить проведение оптимального интервенционного лечения.

В 2009 г. отмечено повышение роли нейровизуализации в отборе пациентов для проведения интервенционного лечения ОИИ [28]. Кроме того, на ежегодном собрании Общества нейроинтервенционной хирургии (Society of Neurointerventional Surgery) были озвучены новые данные испытания DWI and CTP Assessment in the Triage of Wake-up and Late Presenting Strokes Undergoing Neurointervention Trial (DAWN) [29]. Эти данные этого испытания заставляют предположить, что отличный функциональный исход может быть достигнут за счет проведения агрессивной внутриартериальной реваскуляризации у пациентов с доказанным наличием жизнеспособной зоны пенумбры, по результатам КТ или МР-визуализации, в среднем в течение 16 часов от момента появления симптомов инсульта. Согласно результатам испытания, 193 пациентам с ОИИ проводили вмешательство в среднем через 16,3 часа от начала инсульта, благоприятные функциональные исходы (оценку по МШР менее 2 баллов) через 90 дней зарегистрировали у 46% пациентов. Частота развития симптомных внутримозговых кровоизлияний и летальность в этой группе составила 10 и 22% соответственно. Статистически значимыми предикторами благоприятного функционального исхода являлись: возраст (ОШ=0,96, 95% ДИ от 0,93 до 0,99), время до начала лечения (ОШ=1,11, 95% ДИ от 1,01 до 1,21), а также достижение реканализации (ОШ=3,21, 95% ДИ от 1,21 до 8,51). Эти данные свидетельствуют не только о том, что успех в лечении пациентов может быть достигнут при гораздо позднем проведении вмешательства, чем было указано в большинстве ранее проведенных исследований, а также о том, что надлежащий выбор пациента в зависимости от результатов визуализации зоны пенумбры в любой момент времени может привести к улучшению функциональных неврологических исходов. На данный момент последняя точка зрения по-прежнему противоречива и требует дальнейшего изучения.

АНЕВРИЗМЫ

В 2009 г. были получены новые данные из испытания International Subarachnoid Aneurysm Trial (ISAT) [30], большого РКИ, разработанного для сравнения клинических исходов у пациентов с разорвавшимися аневризмами при лечении с помощью эндоваскулярного койлинга или хирургического клippирования. По результатам 5-летнего наблюдения произошло снижение уровня летальности в группе эндоваскулярного лечения по сравнению с группой хирургического лечения (ОШ=0,75, 95% ДИ от 0,58 до 0,97, р=0,03). Эти данные свидетельствуют не только о том, что успех лечения аневризм выявили 8161 аневризм, пролеченных методом койлинга, и развитие повторного кровоизлияния в течение 10 лет после койлинга составил 0,6%. При неразорвавшихся и разорвавшихся аневризмах частота проведения повторного вмешательства составила 6%. В одноцентровом испытании с участием 270 пациентов со средней продолжительностью последующего наблюдения в 22 месяца после эмболизации разорвавшихся аневризм спиралями, повторное кровоизлияние развилось в 2,1% случаев [32]. Большинство повторных кровоизлияний в этом исследовании произошло в течение 30 дней после койлинга, и развитие повторного кровоизлияния было достоверно связано с первоначальной неполной эмболизацией спиралями. В процессе систематического обзора литературных данных об исследованиях с эндоваскулярным лечением аневризм выявили 8161 аневризм, пролеченных методом койлинга, причем с течением времени в 20% случаев произошло повторное открытие аневризмы, и в половине этих случаев проводили повторное лечение [33]. Факторами риска развития реканализации были: размер аневризмы более 10 мм и локализация ее в вертебрально-базилярном бассейне. В совокупности эти данные способствуют утверждению эндоваскулярной спиральной эмболизации в качестве золотого стандарта лечения большинства внутричерепных аневризм. Этот подход был изучен в нескольких центрах с целью применения данного метода лечения аневризм в бассейне средней мозговой артерии [34, 35], маленьких (менее 7 мм) неразорвавшихся аневризм [36] и очень маленьких (менее 3 мм) аневризм [37]. Однако для повышения
длительности спиральной эмболизации необходима разработка новых устройств для укладки спиралей.

“Биологически активные” спирапли, в которых металлическая спираль покрывается рассасывающимся полимером, стали применять для ускорения процессов заживления. Два одноцентровых нерандомизированных исследования представили клинические данные об использовании системы спиралей Cerecyte (Micrus Endovascular) [38, 39]. В обоих исследованиях с группой пациентов, пролеченных только спиралем и проведен соответствующий сравнительный анализ с группой пациентов, пролеченных только непокрытыми металлическими спираплями. В одном исследовании при использовании системы с полиэтиленовой кислотой установили, что частота облитерации аневризма за период последующих наблюдений увеличилась [39]. Аналогичную несущественную тенденцию наблюдали в другом исследовании [38]. Было отмечено, что плотность спирализации не изменяется при использовании биологически активных систем, тем самым укреплялась концепция, согласно которой эта совершеннствованная система спиралей имеет схожие механические характеристики с непокрытыми спиралями. В крупном РКИ, разработанном для оценки системы спиралей Cerecyte, завершили набор участников исследования, и мы ожидаем его результатов в следующем году.

Уже более десяти лет методику баллонного ремоделирования используют как простой метод эмболизации аневризм сосудов головного мозга с широкой шейкой. Исследование Analysis of Treatment by Endovascular approach of Nonruptured Aneurysms (ATEHA), нерандомизированное многоцентровое проспективное исследование, было посвящено сравнению рисков, связанных с проведением койлипинга с помощью баллонной ангиопластики (n=222) или традиционной спиральной эмболизации (n=325) [40]. Не было выявлено никаких различий между группами в частоте развития периперационных осложнений, необратимых остаточных явлений или летальности. Эти данные подтверждают концепцию о том, что эмболизация спиралями с помощью баллонной ангиопластики является безопасным методом лечения. Однако остается нерешенным вопрос, обеспечивает ли такой подход, часто используемый при лечении сложных аневризм с широкой шейкой, долговечность спиральной эмболизации. В одноцентровом исследовании эффективности эмболизации 114 аневризм, локализующихся в бассейне средней мозговой артерии, наличие сложной анатомической структуры диктовало необходимость проведения баллонного ремоделирования, и его использование было в значительной степени ассоциировано с достижением реканализации [34].

Растущий опыт использования низкопрофильных саморасширяющихся стентов, устанавливаемых с помощью микрокатетера, продолжает вызывать огромный интерес. Остаётся надежда, что применение спиральной эмболизации с помощью стентирования (ССЭ) приведет к увеличению долговечности эндоваскулярного лечения [41, 42]. В последнем одноцентровом испытании выполнили ССЭ пациентам со 107 аневризмами с широкой шейкой в совокупности, и было показано, что уровень заболеваемости, связанной с проведением вмешательства и летальность составили 5,6 и 0,9% соответственно [43]. Авторы сообщили, что благоприятные клинические исходы (оценка по шкале Глазго составила 4 или 5 баллов) и результаты Града не показаны при субарахноидальном кровоизлиянии. В многоцентровом нерандомизированном исследовании, проведенном в Финляндии, сообщили об опыте проведения ССЭ у 61 пациента с разорвавшимися аневризмами [45]. Показатель технической успешности составил 72% и осложнения, связанные с ССЭ, были зарегистрированы в 21% случаев. Большинство осложнений было результатом тромбоэмболии. В течение среднего периода наблюдений продолжительностью 1 год у 69% пациентов были благоприятные исходы, т. е. оценка по шкале исходов Глазго составила 4 или 5 баллов. Проведение ССЭ в остром периоде после разрыва аневризмы требует более интенсивного изучения и не рекомендуетя получению результатов РКИ.

До утверждения FDA использование отделяемых спиралей Guglielmi исследователи уже изучают концепцию отведения кровотока при лечении аневризм сосудов головного мозга [46, 47]. По сути, концепция заключается в двух положениях, а именно: в нарушении передачи импульса жидкости на мешок аневризмы и в формировании каркаса, обеспечивающего эффект ремоделирования сосудистой стенки и рост неоинтимы. На сегодняшний день воплощением этой концепции являются мелкопористые плетенные стенты. Применение плетенных стентов Pipeline (eV3 Neurovascular) и других стентоподобных устройств и сосудистых трансплантатов потенциально отражает изменение системы представлений о лечении аневризм внутримозговых сосудов от применения спиральной эмболизации до выполнения реконструкции измененных сосудов и отведения кровотока, а также стратегию сохранения сосудов при повреждении сосудистой стенки. Опубликованные предварительные результаты изучения аневризм у человека были чрезвычайно обнадеживающими [48]. Через 6 и 12 месяцев наблю-
дений частота облитерации в результате отведения кровотока превышала 90% у 28 и 18 пациентов соответственно. В этом году мы узнали, что, несмотря на снижение длительности пребывания в стационаре при эндоваскулярном лечении аневrizмы, проведение хирургического клипирования связано с более низкими затратами [49]. Это было обусловлено высокой стоимостью материалов (например, спиралей для эмболизации) при эндоваскулярном лечении. Замена установки многочисленных спиралей в мешок аневrizмы на устройство для отведения кровотока может представлять собой не только улучшенную стратегию в отношении безопасности пациентов и облитерации аневrizмы, но и решение экономической проблемы. В двух клинических испытаниях начали добыватьсь разрешения на использование устройства Pipeline в Соединенных Штатах. Таким образом, данные, представленные в 2009 г., продолжают повышать роль эндоваскулярного лечения аневrizм сосудов головного мозга. Неразрешенным вопросом является проведение этого вмешательства при неразорвавшихся аневризмах. Поскольку пациенты с неразрывавшимися аневризмами внутренних сосудов никогда не были субъектами для изучения в раандомизированных исследованиях, в испытание Trial on Endovascular Aneurysm Management (TEAM) начали набирать пациентов с неразрывавшимися аневризмами внутренних сосудов для сравнения уровня общей заболеваемости и летальности после эндоваскулярного лечения и традиционного консервативного лечения в течение запланированного 10-летнего периода последующих наблюдений [50]. К сожалению, небольшой объем выборки в испытании привел к прекращению его проведения, о чем было объявлено на конгрессе Всемирной федерации по интервенционной терапевтической нейroradiологии (Congress of the World Federation of Interventional Therapeutic Neuroradiology) в 2009 г. Несмотря на неудачу, исследователи искали маркеры повышенного риска разрыва аневризмы. Наличие воспаления стенки аневризмы было ассоциировано с разрывом аневризмы [51]. Предварительные исследования показывают, что признаки воспаления внутри аневризмы можно выявить неинфекционным способом [52]. Дальнейшее развитие этих методов может привести к появлению методов количественного анализа результатов оценки риска разрыва аневризмы при неразрывавшихся аневризмах сосудов головного мозга, что могло бы привести к оптимизации отбора пациентов для проведения эндоваскулярного лечения.

АРТЕРИОВЕНОЗНЫЕ МАЛЬФОРМАЦИИ

В 2009 г. появился результат одноцентрового исследования эффективности эмболизации N-бутиловый сульфонил 2,5%-цианакрилатом (NBCA) в 202 случаях церебральных артериовенозных мальформаций (ЦАВМ) [53]. Заболеваемость с наличием необратимых остаточных явлений в результате эмболизации в течение в среднем 43 месяцев последующих наблюдений составила 2,5%. Используя данные о 377 процедурах эмболизации, исследователям удалось разработать новую систему классификации, позволяющую прогнозировать риск при проведении эмболизации NBCA. Кроме того, в 2009 г. изучали эффективность эмболизации относительно системой материалом — этиленвиниловым спиртом (Onyx, eV3 Neurovascular). Этот неадгезивный полимер был одобрен FDA США в 2005 г. для использования при эмболизации ЦАВМ. Его вводят в раствор с органическим растворителем (диметилсульфоксидом, ДМСО), который при испарении приводит Onyx к выпадению в осадок. Французские исследователи сообщили о результатах многоцентрового проспективного исследования эффективности использования Onyx в 116 процедурах эмболизации 50 случаев ЦАВМ [54]. При проведении 33 дополнительных процедур использовали NBCA. Через 1 месяц после эмболизации уровень заболевания составил 9% в 73% случаев. В двух одноцентровых ретроспективных исследованиях сообщили о среднем снижении объема ЦАВМ на 75% после эмболизации с использованием Onyx у 123 пациентов, уровень периоперационной заболеваемости составил от 12,2 до 19,5% [55, 56]. В различных публикациях частота облитерации ЦАВМ при проведении эмболизации Onyx составила 8% до 24% [54–56]; однако в одном из исследований были четко связаны со свойствами материалов и используемой методикой. Результаты гистопатологического анализа удаченных ЦАВМ были опубликованы в 2009 г., что позволило провести более точное сравнение результатов эмболизации NBCA (n=10) и Onyx (n=22) [57]. Гистологический анализ показал наличие сосудистого или периваскулярного воспаления в 90% случаев в обеих группах. Инфильтрацию инородного тела гигантскими клетками и реканализацию наблюдали в сосудах при эмболизации Onyx, но не при эмболизации NBCA. Этот результат может быть обусловлен разницей в методах от проведения эмболизации до выполнения хирургической реканализации, которая составила 8 дней для группы NBCA и 18 дней для группы Onyx. Хотя авторы сообщили о более глубоком проникновении материала Onyx в очаг ЦАВМ по сравнению с NBCA, эти результаты четко связаны со свойствами материалов и используемой методикой.

Таким образом, полученные данные требуют подтверждения в многоцентровом исследовании. Использование Onyx безусловно, привело к расширению эндоваскулярного подхода к лечению ЦАВМ. Однако увеличение частоты полной облитерации скрывает повышенный риск развития кровоизлияний, которые, вероятно, являются результатом нарушения венозного оттока. Мы ожидаем, что опыт использования Onyx приведет к улучшению правильного выбора ЦАВМ, и выполнение эмболизации Onyx будет сопровождаться снижением частоты развития осложнений.
Литература

10. Deleted in proof.

27. Wakhloo A.K., Gounis M.J. Retrieval closed cell intracranial stent for...
52. DeLeo M.J. III, Gounis M.J., Hong B., Ford J.C., Wakhloo A.K., Bogdanov A.A. Jr. Carotid artery brain aneurysm model: In vivo molecular enzymespecific mr imaging of active inflammation in a...

