Advances in Vascular Cognitive Impairment

Philip B. Gorelick, MD, MPH, FACP; John V. Bowler, MD, FRCP

Advances in our understanding of vascular cognitive impairment (VCI) have springboarded from further elucidation of the role of vascular risk factors, surgical procedures, medications, and neuroimaging studies that are related to this condition. The main focus of this VCI review will highlight the relation of diabetes mellitus and hippocampal dysfunction in VCI; coronary artery bypass surgery and cognitive decline; the role of cerebral amyloid angiopathy (CAA) in vascular dysfunction; and a discussion of other cardiovascular risk factors, treatment, and neuroimaging findings related to disease progression; and histopathologic and genetic correlates.

Diabetes Mellitus, Hippocampal Function, Cerebral Blood Volume, Glucose, and Infarcts
Diabetes increases the risk of both VCI and Alzheimer disease and may do so by the effects of insulin resistance, hyperglycemia-related increases in advanced glycation end products, and via oxidative stress, inflammation, and macrovascular or microvascular injury. Insulin is transported into the central nervous system through the blood-brain barrier by a saturable receptor-mediated process, and insulin receptors are located in astrocytes and neuronal synapses and are highly concentrated in the olfactory bulb, cerebral cortex, hippocampus, hypothalamus, amygdala, and septum. Of these structures, the hippocampus has been a focus of interest in relation to metabolic dysfunction and cognitive impairment in persons with diabetes.

Wu et al² have shown that in community-based, non-demented elderly who underwent magnetic resonance imaging (MRI) and high-resolution functional mapping of the hippocampus, both diabetes and brain infarcts were associated with hippocampal dysfunction but with separate hippocampal subregions suggestive of distinct underlying mechanisms. Specifically, blood glucose levels were inversely and selectively correlated with dentate gyrus cerebral blood volume, and blood glucose levels were selectively and inversely correlated with total recall on the Selective Reminding Test, whereas CA1 dysfunction was linked to the occurrence of cerebral infarcts, an area known to be differentially vulnerable to transient hypoperfusion. Therefore, these findings clarify how blood glucose levels and brain infarcts in later life may differentially target hippocampal formation and suggest possible mechanisms for prevention of late-life memory decline.

Diabetes is nonetheless associated with a variety of types of cerebral damage. In the SMART study of MRI segmentation data in 1043 individuals, of whom 151 had type 2 diabetes, diabetes mellitus was associated with global atrophy, subcortical atrophy, leukoaraiosis, and lacunar infarcts (but not large infarcts) after correction for other common vascular risk factors.³

In the Adult Changes in Thought Study, a longitudinal, population-based study of aging and cognitive decline, 2 different patterns of cerebral injury at brain necropsy were noted in patients with dementia: Individuals without diabetes had a greater amyloid-B peptide load and increased levels of F2-isoprostanes in the cerebral cortex, whereas those with diabetes had more microvascular infarcts and increased cortical interleukin-6.⁴ These patterns of injury in persons with dementia who do or do not have diabetes suggest possible distinct mechanisms and therapeutic implications.

In addition, in a detailed MRI diffusion-weighted imaging study of hippocampal patterns in acute posterior cerebral artery territory stroke, Szabo et al⁵ identified 4 different patterns of acute ischemic lesions and mnestic neuropsychologic deficits with respect to the side of hippocampal infarction. Finally, among older adults with type 2 diabetes in the Kaiser Permanente Northern California Diabetes Registry, Whitmer et al⁶ showed a graded risk with single and multiple episodes of hypoglycemia severe enough to require hospitalization or an Emergency Department visit and risk of dementia. Specifically, there was a 2.39% increase in the absolute risk of dementia per year of follow-up.

Coronary Artery Bypass Graft Surgery and Cognitive Decline
There has been longstanding concern that patients undergoing coronary artery bypass grafting (CABG) may be at risk for both early (eg, 1 month) and late (eg, 5 or more years) cognitive decline.⁷ A recently published observational study suggests that late cognitive decline after CABG is not specific to the use of cardiopulmonary bypass, because nonsurgical cardiac comparison patients also showed mild late cognitive decline.⁷ Whereas early cognitive decline is common (estimates of 30% to 65%) but appears to improve in the months

Received October 6, 2009; accepted October 14, 2009.
From the Center for Stroke Research (J.B.G.), Department of Neurology and Rehabilitation, University of Illinois College of Medicine at Chicago, Chicago, Ill, and the Department of Neurology (J.V.B.), Royal Free Hospital, London, England.
Correspondence to Philip B. Gorelick, MD, MPH, FACP, Center for Stroke Research, Department of Neurology and Rehabilitation, University of Illinois College of Medicine at Chicago, 912 S Wood St, Room 855N, Chicago, IL 60612. E-mail pgorelic@uic.edu

Stroke is available at http://stroke.ahajournals.org

© 2010 American Heart Association, Inc.

DOI: 10.1161/STROKEAHA.109.569921
after surgery, ~42% have been reported to have worse cognitive function at 5 years after CABG. A number of hypothetical mechanisms have been suggested to explain the cognitive decline associated with CABG, and these include but are not limited to the occurrence of stroke associated with surgery, influence of existing cardiovascular risk factors, effect of pump impurities or surgical anesthetics, and unmasking of Alzheimer disease.

A recently published controlled study supports the contention that avoiding cardiopulmonary bypass may not materially affect cognitive outcomes. In a nonrandomized observational study among patients who underwent standard on-pump CABG, those who underwent off-pump procedures, and medically managed patients with coronary disease but no history of CABG (coronary controls) versus community controls without cardiovascular disease (healthy controls), Selnes et al9 reported that all 3 coronary disease groups showed similar declines in cognitive function over 6 years. Furthermore, they concluded that advanced age and atherosclerosis may be the key determinants of long-term cognitive decline rather than cardiac operations. A well-designed, randomized, large-scale clinical trial could provide more definitive data to answer important questions about long-term cognitive outcomes after CABG and other cardiac procedures.

Risk Indices: Predictors of Maintenance of Cognitive Function or Occurrence of Dementia in the Elderly

The absence of cardiovascular risk factors is proving to be an important component in the prediction of maintenance of cognitive function in the elderly.10 The Health, Aging and Body Composition (Health ABC) study is a prospective cohort of >3000 community-dwelling black and white women and men age 70 to 79 years at recruitment. In the Health ABC study, the following factors were identified as baseline variables significantly associated with maintenance of cognition during an 8-year period when compared with minor cognitive decline (cardiovascular factors underlined): age, white race, education, weekly moderate/vigorous exercise, and not smoking. The cardiovascular risk factors identified in this risk index could impact cognition prevention and treatment strategies.

The Cardiovascular Health Cognition Study has published a late-life dementia risk index that elucidates factors most predictive of developing incident dementia within 6 years’ time in the elderly.11 Key summary predictor factors and point scores assigned to each of the factors are listed in Table 1. (Reference 11 includes a complete definition of predictor factors.) Several of the factors are cardiovascular disease lifestyle or associated factors that are potentially preventable or modifiable. Dementia was associated with low-risk index scores in 4%, moderate scores in 23%, and high scores in 56%.11

<table>
<thead>
<tr>
<th>CAA, Vascular Dysfunction, and Cognitive Consequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerebral amyloid may have several deleterious effects on the brain vasculature. The AB-related form may lead to vascular dysfunction that manifests as impaired vascular responses to stimuli such as systemic blood pressure (ie, impaired autoregulation), arterial partial pressure of carbon dioxide, and neuronal activity.12 Vascular dysfunction mediated by endothelial dysfunction could result in cerebral microinfarction and small cortical infarcts. Furthermore, vascular B-amyloid deposition is toxic to smooth muscle cells, and such damage may result in vascular rupture and brain hemorrhage.12 Cerebral microbleeds may be a consequence of CAA and may be associated with cognitive impairment13 independent of coexistent leukoaraiosis,14 although this point is disputed.15 Recently, concern has been raised that cerebral microbleeds may be associated with aspirin use in the elderly and also may be harbinger of brain macrohemorrhages.16 These findings could have important ramifications for cardiovascular disease prevention and cognitive maintenance in the elderly. Additional well-designed study is needed to clarify the role of antithrombotic use in the elderly and other persons at risk of CAA.16</td>
</tr>
</tbody>
</table>

Table 1. Summary Late-Life Dementia Risk Factors and Point Scores11

<table>
<thead>
<tr>
<th>Factor</th>
<th>Point Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Older age (1–2 points)</td>
<td></td>
</tr>
<tr>
<td>Poor cognitive test performance (2–4 points)</td>
<td></td>
</tr>
<tr>
<td>Body mass index <18.5 kg/m² (2 points)</td>
<td></td>
</tr>
<tr>
<td>Apolipoprotein E e4 allele (1 point)</td>
<td></td>
</tr>
<tr>
<td>Cerebral MRI findings of white-matter disease (1 point) or ventricular enlargement (1 point)</td>
<td></td>
</tr>
<tr>
<td>History of bypass surgery (1 point)</td>
<td></td>
</tr>
<tr>
<td>Slow physical performance (1 point)</td>
<td></td>
</tr>
<tr>
<td>Lack of alcohol consumption (1 point)</td>
<td></td>
</tr>
</tbody>
</table>

*Cardiovascular or cardiovascular-related risk factors are underlined.
adverse risk of silent infarcts from 26.5% to 19.6% (relative risk = 0.74). White-matter grade was also improved, but fish consumption had no effect on atrophy.36

The Aspirin for Asymptomatic Atherosclerosis Trial studied the effect of 100 mg aspirin daily for 5 years in 3350 individuals from central Scotland with a mean age of 62 years at entry.37 These individuals were screened to be at higher risk for cardiovascular disease by use of the ankle-brachial index. No difference on a range of cognitive measures was found between those given aspirin and those taking placebo. The cognitive assessment included measures appropriate for VCI, and the trial cannot be faulted for duration or size. There was some tendency for those at higher risk of vascular events and with lower cognition at baseline to be lost to cognitive follow-up, but these differences were slight. The findings either indicate a true lack of benefit for aspirin at this dose or may reflect the slow progression of early VCI.38 PRoFESS studied cognition according to the Mini Mental State examination (MMSE) with 2.4 years of follow-up in 20,332 individuals from central Scotland with a mean age of 66 years receiving aspirin with dipyridamole, clopidogrel and telmisartan, or placebo in a factorial design and found no differences.39 Although this was a large trial, doubts remain about these findings because of the use of the MMSE, the short follow-up, and the relative youth of the subjects.

Previous studies have shown surprisingly little benefit on cognition as a result of treatment of hypertension, and the HYVET-COG study of those age ≥80 years treated with indapamide with the option of perindopril, or placebo, found no effect on dementia.40 However, the progression of VCI in its early stages is slow, and this trial had been stopped early (at 2.2 years of follow-up) because of a clear benefit of treatment on stroke. Furthermore, cognition was assessed with the MMSE, which is insensitive to the domains commonly affected in VCI. A meta-analysis of antihypertensive treatment trials by the same authors favored treatment.40

Imaging, Histopathology, and Genetics: Focus on Leukoaraiosis

A longstanding problem in VCI has been that varying degrees of tissue damage short of infarction appear the same on standard MRI. In a study not restricted to those with any particular clinical diagnosis and with the advantage of antemortem MRI, a comparison with postmortem histopathology confirmed a vascular etiology for leukoaraiosis in this general population, because reduced vascular integrity was the best predictor of leukoaraiosis, with blood-brain barrier integrity also associated.41 A variety of structural elements, including myelin damage, microglial density, and vascular density, were not correlated with leukoaraiosis.

The MRC CFAS study reported on changes in gene expression in areas of MRI-identified leukoaraiosis, in adjacent normal-appearing white matter, and in control subjects with no leukoaraiosis. They reported 502 genes that were differentially expressed between areas of leukoaraiosis and normal white matter from leukoaraiosis-free controls and that...
Imaging and Progression

Further data on progression have become available. In the Rotterdam Scan Study of 668 people with a mean age of 71 years at their first scan, 39% showed visible progression of leukoaraiosis at 3 years (32% subcortical, 27% periventricular) along with a 14% incidence of silent infarcts and a 2% incidence of symptomatic infarcts. As has previously been observed, baseline severity of leukoaraiosis strongly predicts progression, as do age, blood pressure, current smoking, and the presence of lacunar infarcts. Atrial fibrillation, carotid atherosclerosis, and homocysteine were not related to the progression of leukoaraiosis, although atherosclerosis was associated with lacunar infarcts. Periventricular leukoaraiosis and lacunar infarcts were correlated with declines in information processing speed and general cognition, and a marked progression of periventricular lesions was sufficient to produce a decline in MMSE, whereas subcortical leukoaraiosis had no cognitive correlates.

That severe leukoaraiosis predicts more rapid progression has been further confirmed by data from the PROGRESS trial, in which no leukoaraiosis at study entry was associated with a 4% risk of dementia or severe cognitive decline (as measured by the MMSE) after 4 years of follow-up, whereas 30% of those with severe leukoaraiosis at entry declined to this level. The LADIS study has also reported 2.4-year follow-up data for its observational cohort of 633 74-year-olds and found a very similar transition rate of 29.5% to death or disability in activities of daily living for those with severe leukoaraiosis at entry, compared with 10% in those with only mild changes. It is the progression of leukoaraiosis rather than the baseline level that is correlated best with cognitive decline.

Lesion Location

There has been a continuing debate on whether periventricular or deep leukoaraiosis is more damaging to cognition. Data published during the past year have favored periventricular lesions, because these best predicted the evolution of normal elderly individuals, or those with mild cognitive impairment, to dementia. In the Rotterdam Study, periventricular leukoaraiosis (and infarcts) but not subcortical white-matter lesions were correlated with a decline in speed. Periventricular lesions affect cholinergic projections, as assessed by positron emission tomography.

The LADIS study found that lacunar infarcts in the thalamus are especially likely to damage cognition in several domains, whereas those in the putamen and pallidum may have an effect on memory. Lacunes in the internal capsule, lobar white matter, and caudate had no detectable cognitive consequences. The same study also found that periventricular leukoaraiosis was most closely associated with falls, with some contribution from deep frontal lesions.

Disclosures

None.

References

Advances in Vascular Cognitive Impairment
e97

Key Words: vascular cognitive impairment cardiovascular risk factors neuroimaging genetics
Advances in Vascular Cognitive Impairment
Philip B. Gorelick and John V. Bowler

Stroke. 2010;41:e93-e98; originally published online January 14, 2010;
doi: 10.1161/STROKEAHA.109.569921
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/41/2/e93

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2013/10/06/STROKEAHA.109.569921.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/
Достижения в области лечения и профилактики когнитивных нарушений при сосудистых заболеваниях головного мозга

Ключевые слова: когнитивные нарушения сосудистого генеза (vascular cognitive impairment), факторы риска развития сердечно-сосудистых заболеваний (cardiovascular risk factors), нейровизуализация (neuroimaging), генетика (genetics)

По нашему мнению, существующие достижения в области лечения и профилактики сосудистых когнитивных нарушений (СКН) являются хорошей базой для будущего понимания роли сосудистых факторов риска, оперативного и медикаментозного лечения и методов нейровизуализации при этой патологии.

Основное внимание в данном обзоре будет уделено изучению взаимосвязи между наличием сахарного диабета и дисфункцией гиппокампа при СКН; влияния шунтирования коронарных артерий на ухудшение когнитивных функций, роли церебральной амилоидной ангиопатии (ЦАА) в развитии сосудистой дисфункции, обсуждению других сердечно-сосудистых факторов риска, лечения и результатов нейровизуализации, связанных с прогрессированием заболевания, а также гистопатологических и генетических факторов.

Сахарный диабет, функция гиппокампа, объем циркулирующей крови в головном мозге, уровень глюкозы и инфаркты мозга

Наличие сахарного диабета (СД) приводит к повышению риска развития СКН и болезни Альцгеймера, опосредованных влиянием инсулинорезистентности, увеличением содержания конечных продуктов угсскольного гликозилирования, связанного с гипергликемией, а также развивающихся в результате окислительных процессов, а инсулиновые рецепторы находятся в астроцитах и нейрональных синапсах, в значительной степени сосредоточенных в обонятельной зоне и коре головного мозга, гиппокампе, гипоталамусе, миндалевидном теле и перегородке [1]. Инсулин поступает в центральную нервную систему через гематоэнцефалический барьер путем насыщаемого рецептор-опосредованного процесса, а инсулиновые рецепторы находятся в астроцитах и нейрональных синапсах, в значительной степени сосредоточенных в обонятельной зоне, коре головного мозга, гиппокампе, гипоталамусе, миндалевидном теле и перегородке [1]. Из всех этих структур гиппокамп привлекает наибольший интерес в отношении метаболической дисфункции и когнитивных нарушений у лиц с СД.

W. Wu и соавт. [2] при обследовании пожилых людей, не страдающих деменцией, методами магнитно-резонансной томографии (МРТ) и функциональным картированием гиппокампа с высоким разрешением показали, что наличие СД и инфарктов головного мозга было ассоциировано с дисфункцией гиппокампа. При этом были поражены отдельные участки гиппокампа, что позволяет предположить наличие различных механизмов, лежащих в основе развития его дисфункции. В частности, уровень глюкозы крови обратно и избирательно коррелировал с объемом крови, циркулирующей в области зубчатой извилины, а также избирательно и отрицательно коррелировал с общей способностью удерживать память, что позволяет предположить возможные механизмы предотвращения ухудшения памяти в пожилом возрасте.

Диабет, тем не менее, связан с развитием разнообразных типов поражений головного мозга. В исследовании SMART изучали данные МРТ 1043 лиц, из которых у 151 был СД 2 типа. Наличие диабета после внесения поправок на другие сосудистые факторы риска было ассоциировано с глобальной атрофией, субкортикальной атрофией, лейкоареозом и лакунарными (но не крупными) инфарктами [3].

В исследовании Adult Changes in Thought Study — продольном популяционном исследовании процесса старения и ухудшения когнитивных функций, у пациентов с деменцией на вскрытии обнаружили 2 разных типа поражения головного мозга. У лиц, не страдающих СД, отмечалось большее накопление пептида амилоида-В и повышенный уровень F2-изопростанов в коре головного мозга, тогда как у лиц с диабетом было больше микрососудистых инфарктов и выше уровень кортикального интерлейкина-6 [4]. Эти особенности поражений головного мозга у лиц с деменцией на фоне СД и без него предполагают наличие различных патогенетических механизмов и последствий лечения.

Кроме того, при проведении подробной диффузно-взвешенной МРТ гиппокампа при остом инсульте в бассейне задней мозговой артерии К. Szabo и соавт. [5] выявили 4 разных формы острых ишеми-
ческих поражений и мнестического нейропсихологического дефицита в зависимости от локализации зоны инфаркта в гиппокампе. Наконец, среди пожилых людей с СД 2 типа в реестре Kaiser Permanente Northern California Diabetes Registry R.A. Whitmer и соавт. [6] продемонстрировали ступенеобразное увеличение риска развития деменции при одном или нескольких эпизодах тяжелой гипогликемии, при которой необходима госпитализация или посещение отделения неотложной помощи. В частности, абсолютный риск развития деменции с каждым годом последующих наблюдений повышался на 2,39%.

ОПЕРАЦИЯ АОРТО-КОРОНАРНОГО ШУНТИРОВАНИЯ И УХУДШЕНИЕ КОГНИТИВНЫХ ФУНКЦИЙ

Давно высказывали опасения, что у пациентов, перенесших аортокоронарное шунтирование (АКШ), может произойти как ранее (например, в первый месяц), так и позднее (например, через 5 или более лет) ухудшение когнитивных функций [7]. Недавно опубликованные результаты обсервационного исследования позволяют предположить, что позднее ухудшение когнитивных функций после АКШ не является специфическим последствием искусственного кровообращения, поскольку у кардиологических пациентов, получавших консервативное лечение, также выявили умеренно выраженное позднее ухудшение когнитивных функций [7]. В то же время ранее ухудшение когнитивных функций после АКШ является распространенным явлением (частота от 30 до 65%), причем в первые месяцы после хирургического вмешательства возможно добиться улучшения. Приблизительно у 42% пациентов, по результатам сообщений, ухудшение когнитивных функций произошло через 5 лет после АКШ.

Для объяснения механизма ухудшения когнитивных функций, связанного с АКШ, было предложено много гипотез, включающих не только инсульт, но и проведение оперативного вмешательства, влияние существующих факторов риска развития ишемической болезни сердца (ИБС), использование аппарата искусственного кровообращения или влияние аnestетиков при проведении оперативного вмешательства.

Недавно были опубликованы результаты контролируемого исследования, подтверждающие утверждение, что отказ от использования искусственного кровообращения не может значительно влиять на когнитивные исходы [8]. В нерандомизированном обсервационном исследовании сравнивали пациентов, которым провели стандартную АКШ с использованием искусственного кровообращения, пациентов, которым провели вмешательство без искусственного кровообращения, а также пациентов с ИБС без АКШ в анамнезе, которым лечили консервативно (группа коронарного контроля) с лицами без сердечно-сосудистых заболеваний (здоровыми). О.А. Selnes и соавт. [9] сообщили, что во всех 3 группах пациентов с ИБС произошло аналогичное ухудшение когнитивных функций в течение 6 лет. Кроме того, они пришли к выводу, что преклонный возраст и атеросклероз, а не проведение вмешательства на сердце, могли быть ключевыми факторами, определяющими ухудшение когнитивных функций в отдаленном периоде. Хорошо разработанное рандомизированное крупномасштабное клиническое испытание может предоставить более точные данные для ответа на важные вопросы об отдаленных когнитивных исходах после АКШ и других вмешательств на сердце.

ПОКАЗАТЕЛИ РИСКА: ПРЕДИКТОРЫ СОХРАНЕНИЯ КОГНИТИВНЫХ ФУНКЦИЙ ИЛИ РАЗВИТИЯ ДЕМЕНЦИИ У ПОЖИЛЫХ ЛЮДЕЙ

Отсутствие факторов риска развития сердечно-сосудистых заболеваний (ССЗ) является важным элементом в прогнозировании сохранности когнитивных функций у пожилых людей [10]. В исследовании Health, Aging and Body Composition (Health ABC) проспективно изучали более 3000 пожилых в одном регионе чернокожих и белых женщин и мужчин, возраст которых при зачислении составлял от 70 до 79 лет. Были определены следующие исходные факторы, в значительной степени связанные с сохранением когнитивных функций в течение 8-летнего периода наблюдений, по сравнению с незначительным снижением когнитивных способностей (чернокожи и белые факторы): возраст, принадлежность к белой расе, образование, еженедельные умеренные физические упражнения и отсутствие курения. Факторы риска развития ССЗ, указанные выше, могут повлиять на проведение профилактики нарушений когнитивных функций и стратегию лечения.

ЦЕРЕБРАЛЬНАЯ АМИЛОИДНАЯ АНГИОПАТИЯ, СОСУДИСТЫЕ ДИСФУНКЦИИ И КОГНИТИВНЫЕ НАРУШЕНИЯ

Церебральный амилоид может оказывать некоторое негативное влияние на сосуды головного мозга. AB-связанная форма может привести к сосудистой дисфункции, что проявляется нарушениями сосудистых реакций на раздражители, такие как системное артериальное давление (например, нарушение ауторегуляции), пристеночное давление углекислого газа в артериальной крови и нейрональная активность [12]. Сосудистая дисфункция при посредничестве эндотелиальной дисфункции может привести к развитию церебральных микроинфарктов и малых кортикальных инфарктов. Кроме того, отложение...
ДОСТИЖЕНИЯ В ОБЛАСТИ ИНСУЛЬТА В 2009 ГОДУ

Таблица 1. Факторы, влияющие на риск развития деменции в пожилом возрасте, и оценка в баллах [11]

<table>
<thead>
<tr>
<th>Статус</th>
<th>Баллы</th>
</tr>
</thead>
<tbody>
<tr>
<td>Старческого возраста (1–2 балла)</td>
<td></td>
</tr>
<tr>
<td>Неудовлетворительные результаты оценки когнитивных функций (2–4 балла)</td>
<td></td>
</tr>
<tr>
<td>Индекс массы тела <18,5 кг/м² (2 балла)</td>
<td></td>
</tr>
<tr>
<td>Более 1 аллеля e4 аполипопротеина Е (1 балл)</td>
<td></td>
</tr>
<tr>
<td>Патологическое изменение белого вещества головного мозга (1 балл)</td>
<td></td>
</tr>
<tr>
<td>Утолщение стенки внутренней сонной артерии, по результатам ультразвукового исследования (1 балл)</td>
<td></td>
</tr>
<tr>
<td>АКШ в анамнезе (1 балл)</td>
<td></td>
</tr>
<tr>
<td>Низкая физическая активность (1 балл)</td>
<td></td>
</tr>
<tr>
<td>Отсутствие употребления алкоголя (1 балл)</td>
<td></td>
</tr>
</tbody>
</table>

Данные могут быть токсичным для гладких мышечных клеток и такие повреждения могут привести к разрыву сосудов и развитию церебрального кровоизлияния [12].

Церебральные микрокровоизлияния могут быть следствием церебральной амилоидной ангиопатии (ЦАА) и ассоциироваться с развитием когнитивных нарушений [13] независимо от сосуществующего лейкоареоза [14], хотя эта точка зрения ставится под сомнение [15]. В последнее время повысился интерес к факту, что церебральные кровоизлияния могут быть ассоциированы с применением аспирина у пожилых людей, а также могут являться предвестниками церебральных макрокровоизлияний [16]. Эти данные могут иметь большое значение для профилактики ССЗ и сохранения когнитивных функций у лиц пожилого возраста. Необходимо провести дополнительное, хорошо спроектированное исследование для выяснения роли применения антитромботических препаратов у пожилых людей и других лиц с риском развития ЦАА [16].

ДРУГИЕ ФАКТОРЫ РИСКА РАЗВИТИЯ СЕРДЕЧНО-СОСУДИСТЫХ ЗАБОЛЕВАНИЯ И НАРУШЕНИЙ КОГНИТИВНЫХ ФУНКЦИЙ: ДОПОЛНИТЕЛЬНЫЕ ДОКАЗАТЕЛЬСТВА

В 2009 г. было опубликовано несколько ключевых статей, посвященных изучению взаимосвязи других факторов риска развития ССЗ с развитием когнитивных нарушений, которые не упоминались выше. Эти дополнительные данные представлены в таблице 2 [17–34].

ЛЕЧЕНИЕ И ПРОФИЛАКТИКА

Опубликованы новые данные о лечении и профилактике когнитивных нарушений. В обсервационном исследовании Sacramento Area Latino Study on Aging, проведенном среди 1789 американцев мексиканского происхождения со сроком наблюдения 5 лет, установили, что развитие деменции (всех видов) или нарушений [17–34].

В исследовании PRoFESS с факториальным дизайном изучали когнитивные функции в соответствии со шкалой Mini Mental State examination (MMSE) с длительностью периода наблюдения 2,4 года среди 20 332 лиц в среднем возрасте 66 лет, получающих аспирина в десятки раз меньше дозы, что привело к улучшению церебральной вазореактивности [35]. В исследовании Cardiovascular Health Study, в котором приняли участие 2313 человек, повторно проводили МРТ обследование через 5 лет и обнаружили, что потребление рыбы (особенно тунца, но не жаренной рыбы) может привести к улучшению деменции [36]. Состояние белого вещества головного мозга также улучшилось, но употребление в пищу рыбы не повлияло на атрофию [36].

В испытании Aspirin for Asymptomatic Atherosclerosis Trial с участием 330 человек, проживающих в центральной Шотландии, изучали влияние приема аспирина в дозе 100 мг в день в течение 5 лет, средний возраст участников исследования при зачислении в испытание составил 62 года [37]. При скрининге с использованием лодыжечно-плечевого индекса у участников испытания выявлен более высокий риск развития ССЗ. Между лицами, принимающими аспирин или плацебо, не выявлен никаких различий по ряду показателей когнитивных функций. При изучении когнитивных функций использовали показатели, характерные для КН, и испытание было проведено в надлежащие сроки и с надлежащим размером выборки. Существовала некоторая тенденция в отношении ухудшения когнитивных функций в течение периода наблюдения у лиц с более высоким риском развития ССЗ и исходно худшими показателями когнитивных функций, но эти различия были незначительными. Эти результаты указывают на действительное отсутствие пользы применения аспирина в этой дозе или, возможно, отражают медленное прогрессирование КН на раннем этапе [38].

В исследовании PRoFESS с факториальным дизайном изучали когнитивные функции в соответствии со шкалой Mini Mental State examination (MMSE) с длительностью периода наблюдения 2,4 года среди 20 332 лиц в среднем возрасте 66 лет, получающих аспирина в дозе 100 мг в день в течение 5 лет, средний возраст участников исследования при зачислении в испытание составил 62 года [37]. При скрининге с использованием лодыжечно-плечевого индекса у участников испытания выявлен более высокий риск развития ССЗ. Между лицами, принимающими аспирин или плацебо, не выявлен никаких различий по ряду показателей когнитивных функций. При изучении когнитивных функций использовали показатели, характерные для КН, и испытание было проведено в надлежащие сроки и с надлежащим размером выборки. Существовала некоторая тенденция в отношении ухудшения когнитивных функций в течение периода наблюдения у лиц с более высоким риском развития ССЗ и исходно худшими показателями когнитивных функций, но эти различия были незначительными. Эти результаты указывают на действительное отсутствие пользы применения аспирина в этой дозе или, возможно, отражают медленное прогрессирование КН на раннем этапе [38].
Таблица 2. Основные результаты изучения других факторов риска развития сердечно-сосудистых заболеваний в 2009 г.

<table>
<thead>
<tr>
<th>Фактор: комментарий</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Дитрет:</td>
<td>Высокая приверженность соблюдению средиземноморской диеты и высокая физическая активность были независимо ассоциированы со снижением риска развития БА [17], высокая приверженность соблюдению средиземноморской диеты была ассоциирована с тенденцией к снижению риска развития умеренных когнитивных нарушений и снижению риска трансформации умеренных когнитивных нарушений в БА [18]. По результатам другого исследования, высокая приверженность соблюдению средиземноморской диеты была ассоциирована с медленным ухудшением когнитивных функций при оценке по шкале MMSE, но не была полностью ассоциирована с результатами других нейропсихометрических тестов или с риском развития деменции [19].</td>
<td></td>
</tr>
<tr>
<td>2. Нестероидные противовоспалительные препараты: У лиц, принимающих нестероидные противовоспалительные препараты в больших дозах, был повышен риск развития деменции и БА, давая основание предполагать, что начало их приема в раннем возрасте может привести к повышению риска развития БА в пожилом возрасте [20].</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Нестероидные противовоспалительные препараты: По результатам рандомизированного плацебо-контрольного исследования PROSPER, лечение пефастатином в пожилом возрасте не влияет на ухудшение когнитивных функций в течение 3-летнего периода наблюдений [21]. Повышенное содержание общего холестерина в сверток крови в зрелом возрасте было ассоциировано с повышением риска развития БА и СКН [22]. Кроме того, повышенное содержание общего холестерина и холестерина ЛПНП, а также наличие в анамнезе сахарного диабета были ассоциированы с ускорением прогрессирования нарушений когнитивных функций у пациентов с БА [23].</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Изоляция от общества: У лиц, овдовевших или разведенных в зрелом возрасте и оставшихся в этом статусе в течение периода наблюдений, был повышен риск развития когнитивных нарушений по сравнению с лицами, вступившими в брак или состоявшими в супружеских отношениях [24].</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Метаболический синдром и ожирение: Метаболический синдром в перспективе является предиктором развития когнитивных нарушений у пожилых женщин [25]; выраженность всех критериев ожирения была в перспективе ассоциирована с ухудшением когнитивных функций у мужчин [26]; в зрелом возрасте у лиц с ожирением был повышен риск развития деменции, но показатели риска полностью изменились при оценке индекса массы тела в пожилом возрасте [27].</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Контроль сахарного диабета: Повышенный уровень гликоэлизированного гемоглобина был ассоциирован с ухудшением когнитивных функций у лиц с сахарным диабетом [28].</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Артериальная гипертензия и лечение. У мужчин в Японии и Америке с повышенным риском развития деменции при переходе от зрелого возраста к пожилому возрасту увеличилась распространенность системного артериального давления, что способствовало более медленному ухудшению результатов по некоторым нейропсихометрическим тестам в пожилом возрасте.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Гомоцистеин, фолаты и витамин B12: Среди 124 пациентов с лакунарными инсультами, более чем в 30% случаев содержание витамина B12 было ниже нормального значения более чем в 15 раз. Содержание витамина B12 коррелировало с перивентрикулярным лейкоареозом, но не с поражением белого вещества [31]. Однако дополнительные данные исследование Rotterdam Scan Study, в котором проводили определение биологической активности B12 и гомоцистеина, показали, что повышенный уровень гомоцистеина был связан с увеличением риска развития деменции [32]. В исследовании Three-City study было показано, что повышенный уровень гомоцистеина коррелировал с наличием атрофии и "немых" инфарктов, даже после коррекции по содержанию фолатов, цианокобаламина и пиридоксина, которые были снижены у лиц с повышенным содержанием гомоцистеина. Не выявили корреляции между содержанием гомоцистеина и наличием лейкоареоза. Несмотря на то, что данных о лейкоареозе становится больше, анализ был ограничен дихотомизированным методом на основании "выраженности/распространенности" лейкоареоза [33]. В совокупности эти исследования подчеркивают роль B12, фолатов и гомоцистеина, их взаимосвязи с когнитивными нарушениями и деменцией [30].</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Примечание. БА – болезнь Альцгеймера.

В ранее проведенных испытаниях продемонстрировали удивительно маленький положительный эффект на когнитивную сферу лечения при гипертонической болезни. В исследовании HYVET-COG, в котором изучали эффективность лечения индапамидом с возможностью применения периндоприла или плацебо среди лиц старше 80 лет, не обнаружили влияния лечения на развитие деменции [40]. Тем не менее превысили возрастной риск развития когнитивных нарушений у лиц, оставшихся в этом статусе в течение периода наблюдений (через 2.2 года наблюдений) в связи с очевидной пользой проведенного лечения при инсульте. Кроме того, данные диагностики не были ассоциированы с развитием лейкоареоза [41]. Различные структурные поражения, в т. ч. разрушение миеллина, изменение плотности микроглии и сосудистой сети, не были ассоциированы с развитием лейкоареоза.

В исследовании MRC CFAS сообщили об изменении экспрессии генов в зонах лейкоареоза, выявленных при МРТ, в прилегающем непораженном белом веществе и у лиц контрольной группы без лейкоареоза. Авторы сообщили о 502 генах, экспрессировавшихся по-разному в областях лейкоареоза и нормальном белом веществе у лиц контрольной группы без лейкоареоза. Экспрессия 409 генов,
ДОСТИЖЕНИЯ В ОБЛАСТИ ИНСУЛЬТА В 2009 ГОДУ

Авторы считают, что эти гены принимают участие в развитии дополнительных факторов, таких как дисфункция гематоэнцефалического барьера, что значительно коррелирует с результатами исследований в области метаболического синдрома [44]. Изменения на МРТ не ограничивались дегенеративными заболеваниями мелких сосудов, а также упомянутые инфаркты, фибрилляция предсердий, атеросклероз сонных артерий и уровень гомоцистеина были ассоциированы с прогрессированием лейкоареоза, хотя наличие перивентрикулярного лейкоареоза и лакунарных инфарктов субкортикальной, перивентрикулярной локализации также коррелировало со снижением скорости обработки информации и общего познания, а отмеченное прогрессирование перивентрикулярных поражений было достаточно, чтобы произошло снижение в оценке по шкале MMSE, в то время как при наличии лейкоареоза не выявили корреляционной связи с ухудшением когнитивной деятельности [50].

То, что тяжелый лейкоареоз является предиктором более быстrego прогрессирования когнитивных нарушений еще более подтверждается результатами испытания PROGRESS, в котором отсутствие лейкоареоза при включении было связано с 4%-ным риском развития деменции или серьезного нарушения когнитивных функций (при оценке по шкале MMSE) через 4 года наблюдений, в то время как у 30% лиц с тяжелым лейкоареозом при зачислении в исследование произошло снижение когнитивных функций до аналогичного уровня [51]. В рамках исследования LADIS также были получены данные о наблюдениях в течение 2,4 года за экспериментальной группой из 633 пациентов (средний возраст 74 года). Выявлено, что частота наступления летального исхода или потери трудоспособности в повседневной жизни составила 29,5% для лиц с исходно тяжелым лейкоареозом по сравнению с 10% для лиц, изначально имеющих лишь незначительные изменения вещества мозга [52]. Скорее всего, этот факт отражает прогрессирование лейкоареоза, а не исходную степень поражения, которая лучше коррелировала с ухудшением когнитивных функций [53].

Ю.В. Рашевская

48

ВИЗУАЛИЗАЦИЯ И ПРОГРЕССИРОВАНИЕ

Появилась дополнительные данные о закономерностях прогрессирования когнитивных нарушений. В исследовании Rotterdam Scan Study, проведенном среди 668 лиц, средний возраст которых на момент первого обследования составил 71 год, выявили прогрессирование лейкоареоза через 3 года у 39% (32% — субкортикальный, 27% — перивентрикулярный), а также 14% случаев "немых" инфарктов и 2% случаев симптомных инфарктов. Как ранее отмечалось, исходная тяжесть лейкоареоза является четким предиктором прогрессирования когнитивных нарушений, как и возраст, наличие артериальной гипертензии, курение в настоящее время и наличие лакунарных инфарктов. Фибрилляция предсердий, атеросклероз сонных артерий и уровень гомоцистеина не были ассоциированы с прогрессированием лейкоареоза, хотя наличие перивентрикулярного лейкоареоза и лакунарных инфарктов коррелировало со снижением скорости обработки информации и общего познания, а отмеченное прогрессирование перивентрикулярных поражений было достаточно, чтобы произошло снижение в оценке по шкале MMSE, в то время как при наличии субкортикального лейкоареоза не выявили корреляционной связи с ухудшением когнитивной деятельности [50].

То, что тяжелый лейкоареоз является предиктором более быстрого прогрессирования когнитивных нарушений еще более подтверждается результатами испытания PROGRESS, в котором отсутствие лейкоареоза при включении было связано с 4%-ным риском развития деменции или серьезного нарушения когнитивных функций (при оценке по шкале MMSE) через 4 года наблюдений, в то время как у 30% лиц с тяжелым лейкоареозом при зачислении в исследование произошло снижение когнитивных функций до аналогичного уровня [51]. В рамках исследования LADIS также были получены данные о наблюдениях в течение 2,4 года за экспериментальной группой из 633 пациентов (средний возраст 74 года). Выявлено, что частота наступления летального исхода или потери трудоспособности в повседневной жизни составила 29,5% для лиц с исходно тяжелым лейкоареозом по сравнению с 10% для лиц, изначально имеющих лишь незначительные изменения вещества мозга [52]. Скорее всего, этот факт отражает прогрессирование лейкоареоза, а не исходную степень поражения, которая лучше коррелировала с ухудшением когнитивных функций [53].

Локализация повреждений

Продолжаются дебаты о том, перивентрикулярный или глубинный лейкоареоз оказывает более выраженное влияние на ухудшение когнитивных функций. Данные, опубликованные в течение прошлого года, свидетельствуют о превалировании перивентрикулярных поражений, поскольку они являются более выраженными предикторами развития деменции у лиц пожилого возраста без или с умеренными когнитивными нарушениями [53]. В исследовании Rotterdam Study...
перивентрикулярный лейкоареоз (и инфаркты), а не поражения субкортикального белого вещества, коррелировал со снижением скорости обработки информации [50]. По результатам позитронно-эмиссионной томографии, перивентрикулярные поражения влияют на холинергические процессы [54].

В исследовании LADIS обнаружили, что лакунарные инфаркты в таламусе вероятнее всего оказывают влияние на нарушение когнитивных функций по ряду доменов, в то время как инфаркты в скорлупе и бедном шаре могут оказывать влияние на нарушение памяти. Лакунарные поражения во внутренней капсуле, белом веществе полушарий головного мозга и хвостатом ядре не приводят к распознаваемым когнитивным последствиям [55]. В том же исследовании обнаружили, что перивентрикулярный лейкоареоз наиболее тесно связан с развитием когнитивных нарушений, при этом наличие глубинных поражений лобных долей вносит свой вклад в развитие когнитивных нарушений [56].

ЛИТЕРАТУРА

