Conclusions—"Drip, ship, and retrieve" seems to be feasible and safe in acute basilar artery occlusion. Patients appear to benefit from initiation of intravenous thrombolysis in the community hospital before transfer. Randomized controlled trials will have to confirm the expected benefit of subsequent on-demand mechanical recanalization on clinical outcome. *(Stroke. 2010;41:722-726.)*

Key Words: basilar artery occlusion • intravenous thrombolysis • mechanical recanalization

Background and Purpose—In acute basilar artery occlusion, intra-arterial thrombolysis or endovascular mechanical recanalization may result in higher recanalization rates than intravenous thrombolysis. However, many patients are admitted to community hospitals, where endovascular therapy is usually not readily available. We initiated a “drip, ship, and retrieve” cooperative treatment protocol in 2006, in which thrombolysis was initiated in the community hospital with simultaneous referral to our stroke center and the use of endovascular mechanical recanalization as required.

Methods—The outcome of all consecutive patients treated by this protocol between 2006 and June 2009 was compared with that of a similar population of referred patients who had received primary intra-arterial therapy with or without tirofiban bridging at our center between 2003 and 2005.

Results—In both groups, 26 patients were identified. The rate of symptomatic intracranial hemorrhage was 12% in previous patients and 8% in those treated under the new protocol. Recanalization rates were similar: 92% in previous patients and 85% with the new protocol; 38% of these had recanalization after intravenous thrombolysis alone. Functional outcome was better among those treated with the new protocol, with more patients achieving a modified Rankin scale score ≤2 (38% versus 12%; *P*=0.03) and ≤3 (50% versus 23%; *P*=0.04).

Conclusions—“Drip, ship, and retrieve” seems to be feasible and safe in acute basilar artery occlusion. Patients appear to benefit from initiation of intravenous thrombolysis in the community hospital before transfer. Randomized controlled trials will have to confirm the expected benefit of subsequent on-demand mechanical recanalization on clinical outcome. *(Stroke. 2010;41:722-726.)*

Prognosis in untreated acute basilar artery occlusion (BAO) is poor.1,2 Early recanalization seems to reduce mortality and improve outcome.1-3 Recanalization may be achieved by intravenous thrombolysis (IVT), intra-arterial thrombolysis (IAT),4-6 endovascular mechanical recanalization (EMR),7-9 or a combination of these therapies.10,11 Preliminary data suggest that recanalization rates may be higher with intra-arterial therapy (IA therapy).4 However, recently published data from the large multicenter registry BASICS (Basilar Artery International Cooperation Study) did not demonstrate superiority of IA therapy on clinical outcome.12 Because of the absence of prespecified treatment protocols, the findings of this registry have to be interpreted with caution. Specifically, they cannot prove nonsuperiority of IA therapy. Moreover, <10% of the patients included in this registry were treated with a combination of IVT and IA therapy, an approach that may allow for early treatment initiation and high recanalization rates.10 This combination therapy may be particularly valuable in patients primarily admitted to a community hospital.13 IVT could be initiated there and followed by on-demand IA therapy after immediate transfer to a specialized stroke center. The initiation of IVT in a community hospital with subsequent transfer to a specialized stroke center is referred to as the “drip and ship” approach. Several reports have demonstrated the safety and feasibility of this strategy in acute stroke patients.14,15 In 2006, we implemented a treatment protocol for acute BAO patients, by which cooperating community hospitals were encouraged to initiate IVT (“drip”) on site and immediately transfer the patients to our center (“ship”). In persisting BAO despite IVT, immediate EMR (“retrieve”) was attempted on arrival at our center. This treatment concept was now evaluated by comparing the outcome of patients treated in this way with that of a similar in-house population of referred acute BAO patients treated by primary IA therapy with or without tirofiban bridging in 2003 through 2005.
Patients and Methods

Cooperative Setting
As a tertiary interdisciplinary stroke center in Germany, we closely cooperate with nearby community hospitals. Acute stroke patients are discussed via telephone or a telemedical network by which patients can be examined in a video conference while neuroimaging is electronically transferred. Whenever endovascular treatment seems to be an option, patients are transferred to our center. This way, \(\approx 10 \) patients with confirmed acute BAO are transferred to our center per year.

Patient Groups
Two different patient groups were derived from our in-house prospective database on BAO patients. Patient allocation was based on the fundamental change in our treatment concept for referred patients with acute BAO in 2006. Until then, primary IA therapy was considered the in-house treatment of choice. IVT played no therapeutic role at that time. Accordingly, all consecutive patients treated at our center between 2003 and 2005 were included in this group (group I) if the following inclusion criteria were fulfilled: (1) primary admission at cooperating community hospitals, (2) acute BAO confirmed by CT angiography (CTA) or conventional angiography, (3) referral and admission to our stroke center within 8 hours after estimated time of BAO, and (4) primary IA treatment with or without bridging with the glycoprotein IIb/IIIa inhibitor tirofiban.

The new treatment concept of “drip, ship, and retrieve” was implemented in January 2006. Patients treated thereafter were included in this group (group I) if the following inclusion criteria were fulfilled: (1) primary admission at cooperating community hospitals, (2) acute BAO confirmed by CTA, (3) full-dose IVT (0.9 mg recombinant tissue-type plasminogen activator per kg body weight over 1 hour, maximum 90 mg, 10% as a bolus) initiated at the community hospital within 6 hours after estimated time of BAO, (4) referral and admission to our stroke center within 8 hours after estimated time of BAO, and (5) on-demand EMR. To check the status of the basilar artery after IVT, all patients received a second CTA immediately on arrival at our center.

As in the BASICS registry, we used the estimated time of BAO to specify intervals to treatment. The beginning of IA therapy was defined as the time when the microcatheter was placed at the thrombus. Recanalization after IA therapy was defined as Thrombolysis in Myocardial Infarction II (perfusion with incomplete or slow distal branch filling) or Thrombolysis in Myocardial Infarction III (full perfusion with filling of all distal branches). Comorbiditry was quantified by the Charlson Index, a validated measure of preexisting morbidity. Infarct Extension
To quantify infarct extension after BAO, an MRI-based 10-point score was used. This score reflects the extent of diffusion-weighted imaging lesions in the different vertebrobasilar territories (medulla,pons, mesencephalon, thalamus, cerebellum, and tempo-occipital lobe). It has been shown to correlate with clinical outcome.

Follow-Up
In patients who had survived the acute hospital phase at our center, 3-month outcome was assessed by telephone. The patients’ clinical status was documented using a structured interview and the modified Rankin Scale (mRS), an ordinal scale rating daily life functioning from 0 (no symptoms at all) to 6 (death). The telephone interview used to determine mRS scores had been validated previously and shown to give reliable results. All procedures were in accordance with our institutional guidelines. Patients contacted by telephone gave informed consent for anonymous data analysis and publication.

Statistical Analysis
The statistical software package SPSS 17.0 was used. Values are given as mean\(\pm SD\). Groups were compared by univariate analysis using the independent \(t \) test for comparison of continuous variables and the Fisher exact test for comparison of proportions. Because of the low number of patients and outcomes, we did not perform a logistic regression analysis.

Results
Patients
During the study period (January 2003 to June 2009), a total of 70 patients with radiologically confirmed BAO were treated at our stroke center after referral from cooperating community hospitals. Thirty-three of them were treated at our stroke center after referral from cooperating community hospitals. Thirty-three of them were treated between 2003 and 2005 (group I) and the remaining 37 after implementation of our “drip, ship, and retrieve” protocol in 2006 (group II). In a few patients (\(n = 4 \) in group I and \(n = 3 \) in group II), recanalization was not attempted because of already documented extensive brain stem infarction. Of the remaining patients, 26 in each group fulfilled the inclusion criteria (Figure 1). Reasons for exclusion were delayed presentation (\(n = 3 \) in group I and \(n = 4 \) in group II), contra-indications for IV thrombolysis (\(n = 2 \) in group II), and temporary nonavailability of CTA in the community hospital (\(n = 2 \) in group II). About half of the eligible patients (24 of 52) were transported by helicopter and the others by ambulance. Complications associated with transportation did not occur. In all patients of group II, full-dose IVT was initiated before transport. Because of immediate transfer, IVT was running at the beginning of transportation in all of these patients. In a minority of patients (8 of 26), IVT was still running at the time of arrival at our stroke center. Some of the data from 13 patients have been reported previously.

Patient Characteristics and Therapy
Patient characteristics, including age, risk factors, comorbidity, clinical presentation, extension of BAO, stroke etiology, time to admission at our stroke center, and time to IA therapy,
Table 1. Baseline Characteristics

<table>
<thead>
<tr>
<th>Therapy-Related</th>
<th>Group I (n=26)</th>
<th>Group II (n=26)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment concept</td>
<td>Ship and IA therapy</td>
<td>Drip, ship, and retrieve</td>
</tr>
<tr>
<td>IVT, n (%)</td>
<td>0 (0)</td>
<td>26 (100)</td>
</tr>
<tr>
<td>Time to IVT</td>
<td>Not applicable</td>
<td>3.0 ± 1.1 hours</td>
</tr>
<tr>
<td>Bridging with tirofiban, n (%)</td>
<td>9 (35)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Time to admission at stroke center</td>
<td>4.5 ± 1.4 hours</td>
<td>4.2 ± 1.1 hours</td>
</tr>
<tr>
<td>Time to IA therapy</td>
<td>6.0 ± 1.4 hours</td>
<td>6.0 ± 1.5 hours (n=16)</td>
</tr>
<tr>
<td>IAT, n (%)</td>
<td>19 (73)</td>
<td>3 (12)</td>
</tr>
<tr>
<td>EMR, n (%)</td>
<td>17 (65)</td>
<td>16 (62)</td>
</tr>
<tr>
<td>MERCI retriever</td>
<td>8/17 (47)</td>
<td>6/16 (38)</td>
</tr>
<tr>
<td>AngioJet</td>
<td>12/17 (71)</td>
<td>6/16 (38)</td>
</tr>
<tr>
<td>Penumbra</td>
<td>0 (0)</td>
<td>8/16 (50)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patient-Related</th>
<th>Group I (n=26)</th>
<th>Group II (n=26)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>59.9 ± 14.5 y</td>
<td>60.1 ± 14.9 y</td>
</tr>
<tr>
<td>Female gender, n (%)</td>
<td>11 (42)</td>
<td>11 (42)</td>
</tr>
<tr>
<td>Numbers of risk factors</td>
<td>1.8 ± 1.0</td>
<td>1.6 ± 1.0</td>
</tr>
<tr>
<td>Charlson Index</td>
<td>0.8 ± 1.0</td>
<td>0.9 ± 1.3</td>
</tr>
<tr>
<td>Minimal NIHSS</td>
<td>21.2 ± 6.7</td>
<td>20.7 ± 6.2</td>
</tr>
<tr>
<td>Minimal Glasgow Coma Scale Score</td>
<td>7.3 ± 3.6</td>
<td>7.7 ± 3.1</td>
</tr>
<tr>
<td>Extension of BAO*</td>
<td>1.5 ± 0.7</td>
<td>1.4 ± 0.6</td>
</tr>
<tr>
<td>Stroke etiology, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large artery arteriosclerosis</td>
<td>14 (54)</td>
<td>14 (54)</td>
</tr>
<tr>
<td>Cardioembolic</td>
<td>7 (27)</td>
<td>8 (31)</td>
</tr>
<tr>
<td>Other etiology</td>
<td>1 (4)</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Unknown etiology</td>
<td>4 (15)</td>
<td>3 (12)</td>
</tr>
</tbody>
</table>

*One point each for extension to the proximal, middle, and distal basilar artery.
NIHSS indicates National Institutes of Health Stroke Scale.

Neuroradiological Findings

Overall, recanalization rates were high and comparable in the 2 groups (Table 2). Differences in devices used had no significant influence on recanalization. Looking at group II separately, IVT alone led to prompt recanalization in 10 of 26 patients (38%), as demonstrated by CTA within 2 hours after treatment. Immediate EMR (combined with low-dose IAT in 3 patients) led to recanalization in 12 of the remaining 16 patients of this group (75%).

Symptomatic intracerebral hemorrhage was an infrequent complication in both groups (12% in group I and 8% in group II; Table 2) but led to death in all affected patients. Repeated application of contrast agent during CTA or EMR was well tolerated in all patients. No patients developed renal insufficiency.

Seventeen patients in group I (65%) and 20 patients in group II (77%) received a control MRI including diffusion-weighted imaging within 2 weeks after BAO. MRI demonstrated reduced infarct extension in group II compared with group I (Table 2).

Mortality and Functional Outcome

In 6 of 52 patients (12%), recanalization was not achieved (2 patients in group I and 4 patients in group II). All these patients died within 7 days after BAO because of extensive vertebrobasilar infarction.

At follow-up (3 months after BAO), patients in group II had a lower mean mRS than patients in group I (Table 2). Moreover, mRS scores of ≤2 and ≤3 were more frequently achieved in group II, whereas differences in mortality were not significant (Table 2; Figure 2). Outcome within group I was similar in patients who had received tirofiban as a bridging therapy compared with those who had not (mRS ≤2, 11% versus 12%; mRS ≤3, 22% versus 24%). Outcome within group II was similar in patients in whom recanalization was achieved by IVT compared with those who depended on subsequent EMR (mRS ≤2, 40% versus 42%; mRS ≤3, 50% versus 50%). Use of different devices had no influence on clinical outcome.

Discussion

The key to successful treatment in acute BAO is early recanalization. Our findings demonstrate that in the case of primary admission to a community hospital, on-site initiation of IVT, subsequent transfer to a stroke center, and on-demand...
EMR provide both early treatment initiation and high recanalization rates. In our patients, this “drip, ship, and retrieve” approach was safe and feasible. Specifically, repeated application of contrast agent was well tolerated, no complications occurred during transportation, and symptomatic intracerebral hemorrhage was an infrequent event. We compared the outcome of these patients with a nearly identical in-house population of referred acute BAO patients treated by primary IA therapy with or without tirofiban bridging in the 3 years before 2006.

We are well aware that this analysis cannot compete with a randomized controlled trial. Moreover, the sample size (26 patients per group) was too small for multivariate analysis. Therefore, possible confounders may have been overlooked. Conversely, baseline patient data were very similar in both groups. This argues against a relevant bias. With better evidence still lacking, our data suggest that on-site initiation of IVT improves outcome in patients subsequently transferred to a stroke center for EMR.

Some authors suggested to use glycoprotein IIb/IIIa inhibitors as a bridging therapy in BAO.22,23 Nine of our patients in group I received tirofiban before IA therapy. Therefore, one may argue that group I was too inhomogeneous to serve as a control group for “drip, ship, and retrieve.” However, outcome in group I was similar in patients with and without tirofiban bridging, which should justify merging of the patients to one group. It may be possible that patients in group II benefited from the availability of new devices (Penumbra Stroke System) or the increasing experience of the performing interventionalists. However, recanalization rates were very similar in both groups, and the use of different devices had no significant influence on recanalization rates or clinical outcome. Therefore, we do not believe that possible advances in EMR can explain the observed differences in clinical outcome between the 2 groups.

All patients of group II were treated by IVT initiated at the community hospital. They received a control CTA immediately on arrival at our center. Thereby, early recanalization (within 2 hours after IVT) was demonstrated in 38% of our patients. Previous reports on BAO patients have suggested even higher IVT recanalization rates of 53% and 67%.4,12 However, in these patients, vessel patency was evaluated hours to days after IVT. Therefore, we believe that our findings may more reliably reflect the immediate recanalization rate after IVT in BAO. Because our findings suggest that the majority of patients do not immediately recanalize after IVT alone, simultaneous referral to a specialized stroke center for on-demand escalation therapy seems very reasonable. In this context, the findings of the BASICS registry12 should not be misinterpreted as evidence that IVT alone is sufficient in the treatment of BAO. Our findings suggest that subsequent on-demand EMR is of substantial benefit for patients with persistent BAO after IVT. As expected, EMR was associated with high recanalization rates. But more important, 5 of the 12 patients who recanalized on EMR after ineffective IVT had a good clinical outcome with functional independence after 3 months (mRS =2).

It remains an interesting question for future analyses whether the preceding IVT may have stabilized critical tissue perfusion in the patients who depended on EMR. In other words, one may speculate that the effects of IVT in BAO may be 2-fold: (1) recanalization in some patients, and (2) tissue protection and bridging for immediate EMR in the remaining patients.

In our personal opinion, full-dose rather than reduced-dose IVT should be the initial treatment. Full-dose IVT is a proven therapy in acute ischemic stroke and certainly not restricted to the anterior circulation. In our series, it led to recanalization in more than one third of patients. Moreover, with EMR being increasingly performed, interventionalists may depend less and less on IAT to achieve recanalization. This should justify full-dose IVT without the need to “save” recombinant tissue-type plasminogen activator for consecutive IAT.

Existing data as well as our presented findings still do not provide unequivocal evidence on the best treatment strategy in BAO. Recently published data from the BASICS registry confirm this uncertainty.12 However, this registry impressively demonstrated the broad interest of the stroke community to work on this challenging project. IVT is the standard treatment for acute ischemic stroke.24 Therefore, a future randomized controlled trial should compare IVT alone with IVT plus IA therapy. With intravenous recombinant tissue-type plasminogen activator already applied, IA therapy may predominantly consist of EMR. Therefore, endovascular interventionalists will have the chance to prove the expected clinical impact of mechanical recanalization in BAO as a model for large artery ischemic stroke.

In conclusion, “drip, ship, and retrieve” is a feasible and safe treatment concept for patients with acute BAO. Patients seem to benefit from initiation of IVT in the community hospital before transfer. Randomized controlled trials will have to confirm the expected impact of subsequent IA therapy on clinical outcome.
Acknowledgments
In 14 of the 52 reported patients, the contact between the community hospital and our stroke center was mediated by the Telemedical Pilot Project for Integrative Stroke Care in Bavaria/Germany (TEMPiS). We thank Dr J. Schenkel and coworkers from TEMPiS for this very valuable cooperation. We also thank K. Ogston for language editing of the manuscript.

Disclosures
T.E.M. received financial research support from Penumbra Inc. for the preparation of the manuscript.

We thank Dr J. Schenkel and coworkers from TEMPiS for this very valuable cooperation. We also thank K. Ogston for language editing of the manuscript.

References
Drip, Ship, and Retrieve: Cooperative Recanalization Therapy in Acute Basilar Artery Occlusion

Thomas Pfefferkorn, Markus Holtmannspötter, Caroline Schmidt, Andreas Bender, Hans-Walter Pfister, Andreas Straube, Thomas E. Mayer, Hartmut Brückmann, Martin Dichgans and Gunther Fesl

Stroke. 2010;41:722-726; originally published online February 11, 2010; doi: 10.1161/STROKEAHA.109.567552

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/41/4/722

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2013/10/06/STROKEAHA.109.567552.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/
Подход “drip, ship and retrieve”: совместное проведение реканализационной терапии при острой окклюзии основной артерии

Departments of Neurology and Neuroradiology, Klinikum Grosshadern, University of Munich, Germany.

Предпосылки и цель исследования. При острой окклюзии основной артерии проведение внутриартериального тромболизиса или эндосканальной механической реканализации повышает частоту реканализации по сравнению с внутривенным тромболизисом. Тем не менее многие пациенты поступают в районные больницы, где нет возможности провести эндосканальную терапию. Мы выступили с инициативой внедрения протокола лечения “drip, ship and retrieve” в 2006 г., согласно которому проведение тромболизиса начинается в районной больнице с последующим переводом пациента в крупный центр по лечению больных инсультом, где эндосканальную механическую реканализацию проводят в случае необходимости. Методы. Сравнивали исходы у произвольно отобранных пациентов, получивших лечение согласно данному протоколу в период с 2006 г. по июнь 2009 г. с исходами в аналогичной группе пациентов, которым первично выполняли внутриартериальный тромболизис с или без введения поддерживающей дозы тирофибана в нашем центре в период с 2003 по 2005 г. Результаты. В обеих группах было по 26 пациентов. Частота развития симптоматического внутрчерепного кровоизлияния составила 12% у пациентов, которым проводили лечение по старому протоколу, и 8% у пациентов, получавших лечение согласно новому протоколу. Частота реканализации была практически одинаковой: 92% в группе пациентов, проходивших лечение в период с 2003 по 2005 г., и 85% в группе пациентов, получавших лечение согласно новому протоколу, у 38% из них реканализация произошла после проведения внутриартериального тромболизиса. Функциональные исходы были лучше у пациентов, которым проводили лечение согласно новому протоколу; у большинства пациентов оценка по модифицированной шкале Рэнкина составила менее 2 баллов (38 и 12%, р=0,03) и 3 баллов (50 и 23%, р=0,04). Выводы. Подход “drip, ship and retrieve” при острой окклюзии основной артерии является целесообразным и безопасным. Пациенты получают пользу от начала проведения внутривенного тромболизиса в районной больнице до перевода в специализированный центр по лечению больных инсультом. В рандомизированных контролируемых испытаниях нужно будет подтвердить ожидаемое положительное влияние проведения последующей (в случае необходимости) механической реканализации на клинический исход.

Ключевые слова: окклюзия основной артерии (basilar artery occlusion), внутривенный тромболизис (intravenous thrombolysis), механическая реканализация (mechanical recanalization)

Если не проводится лечение острой окклюзии основной артерии (ООА), то прогноз, как правило, неблагоприятный [1, 2]. Ранняя реканализация, по всей видимости, приводит к снижению летальности и улучшению исхода [1–3]. Реканализация можно добиться путем проведения внутривенного тромболизиса (ВВТ), внутриартериального тромболизиса (ВАТ) [4–6], эндосканальной механической реканализации (ЭВМР) [7–9] или сочетания этих методов лечения [10, 11]. Предварительные результаты показывают, что частота реканализации может быть выше при проведении внутриартериальной терапии (ВА терапии) [4]. Тем не менее недавно опубликованные данные большого многоцентрового реестра BASICS (Basilar Artery International Cooperation Study) не продемонстрировали преимуществ ВА терапии в отношении клинического исхода [12]. В связи с отсутствием предварительно утвержденного протокола лечения результаты этого реестра должны быть интерпретированы с осторожностью. В частности, они не в состоянии опровергнуть преимущество ВА терапии. Кроме того, менее 10% пациентов, включенных в этот реестр, лечили с помощью комбинации ВВТ и ВА терапии, т. е. подхода, позволяющего начать лечение в ранние сроки и приводящего к высокой частоте реканализации [10]. Эта комбинированная терапия может быть особенно полезной, в первую очередь, для пациентов, поступивших в районные больницы [13], где можно начать внутривенный тромболизис с последующим проведением в случае необходимости ВА терапии после немедленного перевода пациента в специализированный центр по лечению больных инсультом. Начало ВВТ в районной больнице с последующим переводом в специализированный инсультный центр называют подходом “drip and ship”. В некоторых работах продемонстрировали безопасность и целесообразность этой стратегии для лечения пациентов с острым инсультом [14, 15]. В 2006 г. мы внедрили протокол лечения пациентов с острой ООА, согласно которому сотрудничающим районным больницам было предложено начинать ВВТ (“drip”) на месте и немедленно переводить пациентов в наш центр (“ship”). При персистирующей ООА, несмотря на ВВТ, по прибытии пациента в наш центр проводили немедленную ЭВМР (“retrieve”). В статье представлены результаты изучения эффективности этой концепции лечения путем сравнения исходов у пациентов, получавших лечение согласно новому протоколу, с исходами в группе пациентов с острым ООА с аналогичными характеристиками, которым выполняли первичную ВА терапию с или без введения поддерживающей дозы тирофибана в период с 2003 по 2005 г.
ПАЦИЕНТЫ И МЕТОДЫ

УСЛОВИЯ СОТРУДНИЧЕСТВА

Наш высокоспециализированный многопрофильный инсультный центр в Германии тесно сотрудничает с близлежащими районными больницами. Состояние пациентов с острым инсультом обсуждают по телефону или изучают с помощью телемедицины, посредством которой пациентов можно обследовать и передавать данные нейровизуализации. В случаях, когда в качестве метода терапии рассматривают эндососудистое лечение, пациентов переводят в наш центр. Таким образом, в инсультный центр в год переводят приблизительно 10 пациентов с подтвержденным диагнозом острой ООА.

ГРУППЫ ПАЦИЕНТОВ

По нашей локальной проспективной базе данных сформировали две различные группы пациентов с ООА. Распределение пациентов по группам было основано на фундаментальных изменениях в нашей концепции лечения упомянутых пациентов с острым ООА в 2006 г. До этого момента предпочитительным корпоративным методом лечения считали ВА терапию, которая начинали в районной больнице не позднее 6 часов после установленного времени начала ООА; (4) первичная ВА терапия с или без введения поддерживающей дозы ингибитора гликопротеина IIb/IIIa тирофибана.

ПОСЛЕДУЮЩИЕ НАБЛЮДЕНИЯ

У выживших пациентов через 3 месяца после острого периода оценивали исход по опросу по телефону. Клиническое состояние пациентов регистрировали с использованием структурированного интервью и модифицированной шкалы Фишера – утвержденному показателю наличия мозговых областей). Было показано, что этот показатель коррелирует с клиническим исходом [18].

СТАТИСТИЧЕСКИЙ АНАЛИЗ

Для обработки данных использовали пакет программ для проведения статистического анализа данных SPSS 17.0. Показатели представлены в виде: среднее значение±стандартное отклонение [СО]. Сравнение характеристик групп проводили при помощи однофакторного анализа с использованием независимого t-критерия для сравнения непрерывных переменных и точного критерия Фишера для относительных переменных. В связи с небольшим числом пациентов и исходов мы не проводили анализ логистической регрессии.

РЕЗУЛЬТАТЫ

ПАЦИЕНТЫ

Завершение проведения исследования (январь 2003 — июнь 2009 г.) в общей сложности 70 пациентов с рентгенологически подтвержденной ООА проходили лечение в нашем центре после перевода их из сотрудничающих районных больниц. Тридцать трех пациентов проходили лечение в период с 2003
помещения протокола “drip, ship and retrieve” в 2006 г. (группа II). У нескольких пациентов (4 в группе I и 3 в группе II) не пробовали добиться реканализации, поскольку у них уже был подтвержден обширный инфаркт ствола головного мозга. В итоге 26 пациентов соответствовали критериям включения (рис. 1). Причины исключения из исследования были: поздняя госпитализация (3 случай в группе I и 4 в группе II), противопоказания к проведению ВВ тромболизиса (2 в группе II) и невозможность выполнения КТА в районной больнице (2 в группе II). Около половины пациентов (24 из 52) были доставлены вертолетами, а остальные – машинами скорой помощи. Осложнений, связанных с транспортировкой, не было. Всем пациентам II группы проведенный ВВТ начали проводить перед транспортировкой. В связи с тем, что устройство Penumbra Stroke System появилось в 2006 г., его использовали только для лечения пациентов группы II.

Результаты нейрорадиологических исследований

В целом частота реканализации была высокой и сопоставимой в обеих группах (таблица 2). Различия в видах используемых устройств не оказали значимого влияния на частоту реканализации. При отдельном изучении данных группы II видно, что проведение только ВВТ привело к быстрой реканализации у 10 (38%) из 26 пациентов, о чем свидетельствовали результаты КТА, проведенные в течение 2 часов после лечения. Сочетание ЭВМР (в сочетании с низкой дозой ВАТ у 3 пациентов) привело к реканализации у 12 (75%) из оставшихся 16 пациентов этой группы. Симптомное внутримозговое кровоизлияние было редким осложнением в обеих группах (12% в группе I и 8% в группе II; таблица 2), но привело к летальному исходу всех пострадавших пациентов. Повторное введение контрастного вещества во время КТА или ЭВМР хорошо переносили все пациенты. Ни у одного из пациентов не развилась почечная недостаточность.

ЛЕТАЛЬНОСТЬ И ФУНКЦИОНАЛЬНЫЙ ИСХОД

У 6 (12%) из 52 пациентов не удалось добиться реканализации (2 пациента в группе I и 4 в группе II). Все они скончались в течение 7 дней после ОOA из-за обширного инфаркта ствола головного мозга. В период последующих наблюдений (3 месяца после ОOA) у пациентов II группы средняя оценка по МШР была ниже, чем в группе I (таблица 2). Кроме того, оценку по МШР <2 и <3 баллов более часто регистрировали у пациентов группы II, в то время как различия в уровне летальности не были значимыми (таблица 2; рис. 2). Иход в группе I был одинаковым у пациентов, которые получили тирофибан в качестве промежуточной терапии по сравнению с теми, кто

Рисунок 1. Отбор пациентов. Причины исключения пациентов указаны в тексте
не получал тирофибан (оценка по МШР ≤2 баллов, 11 и 12% соответственно; оценка по МШР ≤3 баллов, 22 и 24% соответственно). Исход в группе II был одинаков у пациентов, у которых реканализация была достигнута при проведении ВВТ по сравнению с теми, кому потребовалось последующее проведение ЭВМР (оценка по МШР ≤ 2 баллов, 40 и 42% соответственно; оценка по МШР ≤3 баллов, 50 и 50% соответственно). Использование различных типов устройств для ЭВМР не повлияло на клинический исход.

ОБСУЖДЕНИЕ

Ключом к успешному лечению острой ООА является ранняя реканализация. Наши данные свидетельствуют о том, что в случае первичного поступления в районную больницу начало проведения ВВТ на месте, последующий перевод в центр инсульта и при необходимости проведение ЭВМР обеспечивают раннее начало лечения и высокий уровень реканализации. Для наших пациентов подход “drip, ship and retrieve” был безопасным и целесообразным. В частности, многократное применение рентгеноконтрастных препаратов хорошо переносилось, во время транспортировки не происходило никаких осложнений, а симптомное внутримозговое кровоизлияние было редким событием. Мы сравнили исходы у этих пациентов с практически идентичной группой пациентов с острой ООА, которые поступали на лечение в период с 2003 по 2005 г. и первично получали ВА терапию с и без введения поддерживающей дозы тирофибана.
Мы прекрасно понимаем, что проведенная работа не может конкурировать с рандомизированным контролируемым испытанием. Кроме того, размер выборки (по 26 пациентов в группах) был слишком мал для проведения многофакторного анализа. Таким образом, возможные неизвестные факторы, способные принципиально повлиять на результаты, вероятно, были недооценены. С другой стороны, исходные характеристики пациентов были очень схожи в обеих группах. Это является контраргументом в отношении возможности появления систематической ошибки. Ввиду отсутствия более надежных доказательств, полученные данные демонстрируют, что начало проведения ВВТ на месте улучшает исход у пациентов, которым впоследствии переводят в инсульный центр для выполнения ЭВМР.

Некоторые авторы в качестве промежуточной терапии при ООА предлагают использовать ингибиторы гликопротеина IIb/IIIa [22, 23]. В нашем исследовании девять пациентов из группы I получали тирофибан до начала ВА терапии. Таким образом, можно утверждать, что группа I была слишком неоднородной, чтобы служить в качестве контрольной группы для изучения подхода “drip, ship and retrieve”. Тем не менее исход в группе I был одинаковым у пациентов, получавших и не получавших тирофибан в качестве промежуточной терапии, и это служит аргументом для объединения этих пациентов в одну группу. Возможно, что пациенты группы II получили выгоду от появления новых устройств (Penumbra Stroke System) или накопившихся опыта и знаний у практикующих хирургов. Тем не менее исходы (оценка по МШР) в группе II были одинаковыми у пациентов, получавших и не получавших тирофибан.

В будущих исследованиях остается решить вопрос, приводит ли предшествующий ВВТ к стабилизации критической перфузии тканей у пациентов, которым необходимо проведение ЭВМР. Иными словами, можно предположить, что влияние ВВТ при ООА может быть двойственным: (1) реканализация у части пациентов, (2) защита тканей и поддержка до проведения срочной ЭВМР у остальных пациентов.

По нашему мнению, в качестве первоначального лечения необходимо использовать адекватный ВВТ, а не тромболизис со сниженными дозами. Адекватный ВВТ является доказанным методом лечения при остром ишемическом инсульте и, конечно,
но, не ограничивается поражениями в бассейне сонной артерии. В нашей серии наблюдений на фоне ВВТ реканализация произошла более чем у 30% пациентов. Кроме того, при более частом выполнении ЭВМР хирурги могут меньше зависеть от ВА терапии для достижения реканализации. Это должно оправдать проведение ВВТ без потребности “сохранения” рекомбинантного тканевого активатора плазминогена для последующей ВА терапии.

Имеющиеся данные, а также представленные результаты не дают неоспоримых доказательств для разработки лучшей стратегии лечения при ООА. Недавно опубликованные данные реестра BASICS подтверждают эту неопределенность [12]. Однако этот реестр продемонстрировал возросший интерес врачей к работе над этой сложной проблемой. ВВТ является стандартным методом лечения острого ишемического инсульта [24]. Таким образом, в будущих рандомизированных контролируемых испытаниях необходимо проводить сравнение эффективности ВВТ и ВВТ в сочетании с ВА терапией. В случае предварительного внутривенного введения рекомбинантного тканевого активатора плазминогена ВА терапия может заключаться преимущественно в проведении ЭВМР. Таким образом, у хирургов появится возможность доказать ожидаемое клиническое влияние механической реканализации при ООА в качестве метода лечения ишемического инсульта в бассейне крупной артерии.

В заключение, “drip, ship and retrieve” является целесообразной и безопасной концепцией лечения пациентов с острой ООА. Пациенты, по-видимому, получают пользу от начала проведения ВВТ в районной больнице до их транспортировки. В рандомизированных клинических испытаниях необходимо подтвердить ожидаемое влияние последующей ВА терапии на клинический исход.

ЛИТЕРАТУРА

Слоган “drip, ship and retrieve” применительно к проблеме лечения ишемического инсульта мозга и звучащий как “капать, везти, извлекать”, в принципе, абсолютно верно отражает сущность современного терапевтического подхода к данному вопросу. Но верно и то, что такой подход в российских условиях должен соотноситься с решением организационно-транспортных задач и финансово-экономических вопросов.

В Российской Федерации еще недостаточно лечебно-профилактических учреждений, имеющих в своей структуре хорошо оснащенную рентгеноперационную, а в ее штате специалистов, владеющих техникой селективной катетеризации внутричерепных артерий.

Различные устройства для механической реканализации артерий мозга – сложные и дорогостоящие инструменты. В совокупности с ценой на контрастные препараты, тромболитики, усовершенствованные микрокатетеры и проводники они составляют весьма внушительную сумму, что резко ограничивает масштаб их применения.

К тому же следует, насколько возможно, предварительно выяснить морфологическую природу окклюзии артерии. Если ее причиной стали твердые фрагменты бляшки, опухоли или кальцинаты, то, естественно, трудно ожидать полноценного эффекта от любых тромболизирующих препаратов и тогда единственной возможностью восстановления кровотока по артерии остается, действительно, механическая реканализация. Аналогичная ситуация складывается при западающем вмешательстве, когда нити фибрина в тромбе трансформировались в плотный стукуток или тромбоз возник в области предшествующего выраженного сужения артерии. В этом плане в статье содержится весьма важная информация о клинической равноценности результатов применения различных устройств для механической реканализации. Иными словами, небольшой ассортимент таких устройств не должен ограничивать показания к их применению.

Авторы достаточно критично оценивают свой опыт, который не позволяет сделать их данные статистически достаточно убедительными. Тем не менее они полагают, что предлагаемый ими подход заслуживает внедрения в широкую практику и, судя по приведённым ими показателям летальности и клинической эффективности, он себя оправдал.

Возможно, при выборе показаний к разным методам реваскуляризации мозга и для контроля динамики восстановления кровотока по внутримозговым артериям или уровня перфузии мозга целесообразно использовать не только транскраниальную допплерографию, но и компьютерную томографию (КТ) с контрастным усилением, либо МР-ангиографию. Причем в случаях с КТ значимую помощь оказывает методика построения кривых “плотность-время” в зоне ишемии. Такие программы есть во всех, даже старых моделях компьютерных томографов. К тому же, как показал опыт авторов, контрастный препарат, естественно неинъекционный, в вводимых им объемах не оказывал повреждающего воздействия ни на мозговую деятельность, ни на почки.

В целом, положительно оценивая представленный материал, следует рассматривать его как основание для будущих практический действий и клинических исследований.

Ю.Д. Волынский,
главный научный сотрудник
НИИ инсульта ГОУ ВПО РГМУ Росздрава,
доктор медицинских наук, профессор