Hyperthyroidism and Risk of Ischemic Stroke in Young Adults
A 5-Year Follow-Up Study

Jau-Jiuan Sheu, MD, MPH; Jiunn-Horng Kang, MD, MSc; Hsiu-Chen Lin, MD; Herng-Ching Lin, PhD

Background and Purpose—Case reports or case series have reported the association between hyperthyroidism and cerebrovascular disease. However, hyperthyroidism has never been considered as a potential risk factor for stroke in young people. The aim of the present study is to estimate the risk for ischemic stroke among hyperthyroidism patients aged 18 to 44 years during a 5-year period after the diagnosis of hyperthyroidism as compared to a cohort of patients without hyperthyroidism during the same period.

Methods—A total of 3176 patients with hyperthyroidism were included as the study cohort and 25 408 patients without hyperthyroidism were included as comparison cohort. Each patient was individually tracked for 5 years from their index ambulatory visit to identify those in whom ischemic stroke developed. Cox proportional hazard regressions were performed to compute the 5-year stroke-free survival rate between these 2 cohorts.

Results—Of the total sample of 28 584 patients, 198 patients (0.7%) had ischemic strokes during the 5-year follow-up period (31 [1.0% of the hyperthyroidism patients] from the study cohort and 167 [0.6% of comparison patients] from the comparison cohort). After adjusting for the patient’s age, gender, income, level of urbanization, hypertension, diabetes, atrial fibrillation, hyperlipidemia, coronary heart disease, and whether they were using antiarrhythmics, the hazard of having ischemic stroke during the 5-year follow-up period was 1.44-times greater (95% CI, 1.02–2.12; \(P = 0.038 \)) for patients with hyperthyroidism than for patients in the comparison cohort.

Conclusions—We conclude that hyperthyroidism is associated with an increased risk for ischemic stroke among young adults. (Stroke. 2010;41:961-966.)

Key Words: hyperthyroidism is ischemic stroke

Hyperthyroidism is a common endocrine disorder, affecting 0.5% to 2% of the population, and young adults comprise a significant proportion of those with this disorder.\(^1,2\) Although hyperthyroidism may involve short-term and long-term cardiovascular consequences,\(^3\) data concerning the association between hyperthyroidism and cardiovascular outcomes are inconsistent.\(^4\) Hyperthyroidism is well-known to be associated with an increased risk of atrial fibrillation among people aged 60 years or older,\(^5\) and there is a high risk for cardioembolic stroke in hyperthyroidism patients with atrial fibrillation.\(^6\) However, there is a marked absence of data relating to the risk of stroke in young adults with hyperthyroidism.

Hyperthyroidism may also be associated with various types or etiologies of cerebrovascular disease, including Moyamoya disease, antiphospholipid syndrome, giant cell arteritis, Takayasu arteritis, and cerebral venous thrombosis. However, only case reports or case series were found in the literature, and the causal relationship between hyperthyroidism and these syndromes cannot be established.\(^6\) Regarding stroke subtypes, according to the Trial of Org 10172 in Acute Stroke Treatment criteria,\(^8\) previous studies have found that strokes of other determined etiologies explained \(\approx 25\%\) of ischemic strokes in young people, including dissection, antiphospholipid syndrome, Moyamoya disease, systemic lupus erythematosus, migraine-related stroke, and coagulopathy.\(^9,10\) In addition, strokes of undetermined etiology accounted for one-third to one-quarter of ischemic strokes among young people\(^11,12\) and, to the best of our knowledge, hyperthyroidism has never been considered as a potential risk factor for stroke. The aim of the present study is to estimate the risk for ischemic stroke among hyperthyroidism patients aged 18 to 44 years during a 5-year period after the diagnosis of hyperthyroidism as compared to a cohort of patients without hyperthyroidism during the same period.
Materials and Methods

Database
This study used a database (Longitudinal Health Insurance Database [LHID]) provided to scientists in Taiwan by the Taiwan National Health Research Institute in 2007 for research purposes. This data set includes original claims data for 1 000 000 beneficiaries between the years 1996 and 2006 from Taiwan’s National Health Insurance (NHI) program, a single-payer payment system that finances affordable health care for all Taiwanese citizens. As of 2007, 22.60 million (>98%) of Taiwan’s population of 22.96 million were enrolled in this program. The LHID, which the Taiwan National Health Research Institute created by systematically selecting a representative database from the year 2005 registry of NHI beneficiaries, consists of 1 000 000 randomly selected subjects. The Taiwan National Health Research Institute reported that there were no statistically significant differences in age, gender, or health care costs between the sample group in the LHID and all beneficiaries under the NHI program. Therefore, the LHID offers a unique opportunity to identify the risk of stroke occurring among young patients with hyperthyroidism.

Validity of diagnoses is usually a concern with claims data sets. Thus, the NHI Bureau of Taiwan performs routine sampling of patient charts to cross-check claims from every hospital, followed by punitive measures for fraudulent coding. Any hospital with outlier charges or outlier practice patterns, or that is suspected of malpractice, faces the risk of an audit and may be subject to heavy penalties from the NHI Bureau when discrepancies, overcharging, or malpractice are discovered. Deterrence is further reinforced by the reimbursement system of NHI, which ties a hospital reimbursement rate to its patient severity profile. It is generally believed that the checks and balances of NHI promote accurate coding. Because the LHID consists of de-identified secondary data released to the public for research purposes, this study was exempt from full review by the Institutional Review Board.

Study Sample
The study design was a prospective, case-cohort study. We selected all patients younger than 45 years old who visited ambulatory care centers with a principal diagnosis of hyperthyroidism (ICD-9-CM code 242, thyrotoxicosis with or without goiter) during the 4-year period from January 1, 1998 to December 31, 2001 as the study cohort (n = 5935). We excluded patients who had hyperthyroidism diagnosed before 1998 to increase the likelihood of identifying only new hyperthyroidism cases (n = 217). In this study, we assigned their first visits for the treatment of hyperthyroidism as the index ambulatory care visit. We also excluded those patients younger than 18 years old to limit our study sample to the adult population (n = 402). Furthermore, to avoid mistaken diagnoses, we only selected patients who had at least 2 consensus-diagnosed episodes of hyperthyroidism during the study period and who had been prescribed antithyroid drugs (n = 3261). We found there were no young adults with hyperthyroidism receiving radioactive iodine therapy during this period.

To exclude other causes of ischemic stroke in young people, we also excluded patients who had congenital heart or circulatory disease (ICD-9-CM 745 to 747), acute rheumatic fever or chronic rheumatic heart disease (ICD-9-CM codes 390 to 398), other forms of heart disease (ICD-9-CM codes 420 to 429), arterial dissection (ICD-9-CM code 443.2), cerebral arteritis (ICD-9-CM code 437.4), migraine (ICD-9-CM code 346), systemic lupus erythematosus (ICD-9-CM code 710.0), primary hypercoagulable state (ICD-9-CM code 289.81), or disorders of mitochondrial metabolism (ICD-9-CM code 277.87) (n = 75) diagnosed. We also excluded patients who had any type of stroke (ICD-9-CM codes 430 to 438) before their index ambulatory care visit (n = 10). As a result, 3176 hyperthyroidism patients were included as the study cohort.

The comparison cohort of this study was selected from the remaining patients in the LHID. We randomly extracted 25 408 subjects from the registry of beneficiaries (8 for every patient in the study cohort) matched with the study cohort patients in terms of age (18–24, 25–34, and 35–44), gender, and the year of index ambulatory care visit. We selected their first ambulatory visits occurring in the index year as the index ambulatory care visit. We excluded patients with hyperthyroidism or stroke diagnosed between 1996 and 2006. In addition, the exclusion criteria for selecting the comparison cohort were the same as those for the patient cohort. Each patient (n = 28 584) in this study was individually tracked for 5 years from the index ambulatory care visit to identify those who had at least 2 consensus-diagnosed episodes of ischemic stroke (ICD-9-CM codes 433 to 436).

In this study, we also took potential confounders into consideration in the regression modeling. These confounders included sociodemographic characteristics (age, gender, and income [0, NT$1–NT$15 840; NT$15 841–NT$25 000; ≥NT$25 001], level of urbanization, and the geographical location (Northern, Central, Eastern, and Southern Taiwan) of the community in which the patient resided, as well as comorbid medical disorders identified by the diagnosis codes that either occurred in the inpatient setting or appeared in ≥2 ambulatory care claims coded 6 months before and after the index ambulatory care visits, including hypertension, diabetes, hyperlipidemia, atrial fibrillation, and coronary heart disease, which all may exacerbate the risk of stroke. Furthermore, we have adjusted for whether a patient used antarrhythmics during the follow-up period in the regression modeling. In this study, we selected NT$15 840 as the first income level cut-off point because this is the government-stipulated minimum wage for full-time employees in Taiwan. In addition, urbanization levels in Taiwan are divided into 7 strata in Taiwan National Health Research Institute publications, with level 1 referring to the “most urbanized” and level 7 referring to the “least urbanized” communities. However, given that there were only small numbers of hyperthyroidism cases in levels 5, 6, and 7, these 3 levels were combined into a single group, which is hereafter referred to as level 5.

Statistical Analysis
In this study, we used the SAS statistical package (version 8.2; SAS System for Windows) to perform all analyses in this study. Pearson χ² tests were performed to compare differences in sociodemographic characteristics, select comorbid medical disorders, and determine the risk for stroke for the study and comparison cohorts. We used the Kaplan-Meier method to estimate 5-year stroke-free survival rates and the log-rank test was also performed to examine differences in the risk for stroke between the 2 cohorts. Finally, Cox proportional hazard regressions were performed to compute the 5-year survival rate between these 2 cohorts after adjustment for the variables mentioned. In addition, our data met the proportionality assumption (meaning that survival curves for 2 strata, hyperthyroidism patients and patients in the comparison cohort, have hazard functions that are proportional over time). A 2-tailed level of 0.05 was considered significant in the models.

Results
Of the 28 584 sampled patients, the mean ages were 32.1 (SD, 7.4 years) and 32.3 (SD, 7.5 years) for patients with and without hyperthyroidism, respectively (P = 0.093). The distributions of sociodemographic characteristics and comorbid medical disorders for these 2 cohorts are presented in Table 1. After matching for age and gender, patients with hyperthyroidism were more likely to have comorbidities such as hypertension (P = 0.007) and diabetes (P < 0.001) at the time of the index ambulatory care visit than patients in the comparison cohort. No significant differences in the level of urbanization and the geographic location of the communities in which the patients resided were observed between these 2 cohorts.

Table 2 shows the distributions of ischemic stroke during the 5-year follow-up period for these 2 cohorts. Because the National Health Insurance Research Database allows us to
trace all use of medical services for all enrollees, all sampled patients could be followed-up throughout the study period. Of the total sample of 28,584 patients, 198 patients (0.7%) had ischemic strokes during the 5-year follow-up period: 31 from the study cohort (1.0% of the hyperthyroidism patients) and 167 comparison patients (0.6% of patients from the comparison cohort).

The log-rank test reveals that patients with hyperthyroidism had significantly lower 5-year stroke-free survival rates than patients in the comparison cohort \((P = 0.028) \). In addition, we found that the mean and median times between ambulatory care visits and the onset of ischemic stroke were 983 (SD, 528 days) and 1004 days, respectively, for patients with hyperthyroidism. The Figure illustrates the results of Kaplan-Meier survival analysis.

Table 2 also presents the crude and adjusted hazard ratios for ischemic stroke by cohort. Patients with hyperthyroidism were more likely to have ischemic strokes during the follow-up period than patients in the comparison cohort (hazard ratio, 1.49; 95% CI, 1.01–2.19; \(P = 0.021 \)). After adjusting for the patient’s age, gender, hypertension, diabetes, atrial fibrillation, coronary heart disease, hyperlipidemia, use of antiarrhythmic, monthly income, urbanization level, and geographical region, the hazard of having ischemic stroke during the 5-year follow-up period was 1.44-times greater (95% CI, 1.02–2.12; \(P = 0.038 \)) for patients with hyperthyroidism than for patients in the comparison cohort.

Table 1. Demographic Characteristics and Comorbid Medical Disorders for Patients in Taiwan With Hyperthyroidism and Patients in the Comparison Cohort, 1998–2001 (\(n = 28,584 \))

<table>
<thead>
<tr>
<th>Variable</th>
<th>Patients With Hyperthyroidism ((n = 3176))</th>
<th>Comparison Patients ((n = 25,408))</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td>1.000</td>
</tr>
<tr>
<td>Male</td>
<td>557</td>
<td>4456</td>
<td>17.5</td>
</tr>
<tr>
<td>Female</td>
<td>2619</td>
<td>20,952</td>
<td>82.5</td>
</tr>
<tr>
<td>Age, yr (\leq 25)</td>
<td>599</td>
<td>4792</td>
<td>18.9</td>
</tr>
<tr>
<td>25–34</td>
<td>1323</td>
<td>10,584</td>
<td>41.7</td>
</tr>
<tr>
<td>35–44</td>
<td>1254</td>
<td>10,032</td>
<td>39.4</td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
<td></td>
<td>0.007</td>
</tr>
<tr>
<td>Yes</td>
<td>16</td>
<td>61</td>
<td>0.2</td>
</tr>
<tr>
<td>No</td>
<td>3160</td>
<td>25,347</td>
<td>99.8</td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
<td></td>
<td>(< 0.001)</td>
</tr>
<tr>
<td>Yes</td>
<td>24</td>
<td>79</td>
<td>0.3</td>
</tr>
<tr>
<td>No</td>
<td>3152</td>
<td>25,329</td>
<td>99.7</td>
</tr>
<tr>
<td>Coronary heart disease</td>
<td></td>
<td></td>
<td>0.896</td>
</tr>
<tr>
<td>Yes</td>
<td>3</td>
<td>26</td>
<td>0.1</td>
</tr>
<tr>
<td>No</td>
<td>3173</td>
<td>25,382</td>
<td>99.9</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td></td>
<td></td>
<td>0.198</td>
</tr>
<tr>
<td>Yes</td>
<td>7</td>
<td>33</td>
<td>0.1</td>
</tr>
<tr>
<td>No</td>
<td>3169</td>
<td>25,375</td>
<td>99.9</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td></td>
<td></td>
<td>0.624</td>
</tr>
<tr>
<td>Yes</td>
<td>6</td>
<td>11</td>
<td>0.0</td>
</tr>
<tr>
<td>No</td>
<td>3170</td>
<td>25,397</td>
<td>100.0</td>
</tr>
<tr>
<td>Taking antiarrhythmics</td>
<td></td>
<td></td>
<td>(< 0.001)</td>
</tr>
<tr>
<td>Yes</td>
<td>26</td>
<td>66</td>
<td>0.3</td>
</tr>
<tr>
<td>No</td>
<td>3150</td>
<td>25,342</td>
<td>99.7</td>
</tr>
<tr>
<td>Monthly income</td>
<td></td>
<td></td>
<td>0.008</td>
</tr>
<tr>
<td>0</td>
<td>1793</td>
<td>14,738</td>
<td>58.0</td>
</tr>
<tr>
<td>NT$1–NT$15 840</td>
<td>339</td>
<td>3002</td>
<td>11.8</td>
</tr>
<tr>
<td>NT$15 841–NT$25 000</td>
<td>692</td>
<td>5193</td>
<td>20.4</td>
</tr>
<tr>
<td>≥NT$25 001</td>
<td>352</td>
<td>2475</td>
<td>9.8</td>
</tr>
<tr>
<td>Geographic region</td>
<td></td>
<td></td>
<td>0.737</td>
</tr>
<tr>
<td>Northern</td>
<td>2222</td>
<td>17,601</td>
<td>69.3</td>
</tr>
<tr>
<td>Central</td>
<td>415</td>
<td>3476</td>
<td>13.7</td>
</tr>
<tr>
<td>Southern</td>
<td>496</td>
<td>4013</td>
<td>15.8</td>
</tr>
<tr>
<td>Eastern</td>
<td>43</td>
<td>318</td>
<td>1.3</td>
</tr>
<tr>
<td>Urbanization level</td>
<td></td>
<td></td>
<td>0.924</td>
</tr>
<tr>
<td>1</td>
<td>645</td>
<td>5122</td>
<td>20.2</td>
</tr>
<tr>
<td>2</td>
<td>552</td>
<td>4477</td>
<td>17.6</td>
</tr>
<tr>
<td>3</td>
<td>312</td>
<td>2603</td>
<td>10.2</td>
</tr>
<tr>
<td>4</td>
<td>221</td>
<td>1796</td>
<td>7.1</td>
</tr>
<tr>
<td>5</td>
<td>1446</td>
<td>11,410</td>
<td>44.9</td>
</tr>
</tbody>
</table>

Table 2. Crude and Adjusted Hazard Ratios for Stroke Among the Sample Patients During the 5-Year Follow-Up Period Starting From the Index Ambulatory Care Visit (\(n = 28,584 \))

<table>
<thead>
<tr>
<th>Presence of Ischemic Stroke</th>
<th>Total Sample</th>
<th>Comparison</th>
<th>Hyperthyroidism</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>5-year follow-up period</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>198</td>
<td>0.7</td>
<td>167</td>
</tr>
<tr>
<td>No</td>
<td>28,386</td>
<td>99.3</td>
<td>25,241</td>
</tr>
<tr>
<td>Crude HR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(95% CI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted* hazard ratio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(95% CI)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Adjustments are made for patient’s age, gender, hypertension, diabetes, atrial fibrillation, coronary heart disease, hyperlipidemia, use of antiarrhythmics, monthly income, urbanization level, and geographical region.

Sheu et al Hyperthyroidism and Ischemic Stroke 963

Discussion

The previous hospital-based studies of young people with ischemic stroke showed that no cause has been found in up to one-third of young patients despite extensive investigation of etiologies.\(^\text{11,12}\) Inadequately recognized genetic factors and poorly understood risk factors may contribute to this large proportion of undetermined etiology in young people with stroke.\(^\text{10}\) Although previous studies showed hyperthyroidism increased stroke mortality in elderly patients,\(^\text{7,14}\) the risk of stroke did not increase in patients aged 25 to 74 with hyperthyroidism diagnosed by free thyroxine index measurement.\(^\text{15}\) To the best of our knowledge, this study is among the
first population-based epidemiological study to investigate
the risk of ischemic stroke focusing on young adults with
hyperthyroidism in the 5 years after the hyperthyroidism
diagnosis, adjusting for demographic characteristics and
comorbid medical disorders, and our findings indicate that
hyperthyroidism may be a risk factor of young ischemic
stroke.

We also found that the median time between the first
ambulatory care visit and the onset of ischemic stroke was
1004 days for patients with hyperthyroidism, and thus half of
the strokes occurred >1004 days after a diagnosis of hyper-
thyroidism. Our study indicates hyperthyroidism and antithy-
roid therapy may be associated with short-term and long-term
cerebrovascular consequences. These results are in accor-
dance with previous studies suggesting that hyperthyroidism
and radiiodine therapy are associated with increased
long-term vascular risk.3,7 Considering that 12 to 18
months is the optimum duration of antithyroid drug ther-
apy,16 efforts to prevent stroke should last even after
restoration of euthyroidism.

Except for cardioembolic stroke related to atrial fibrilla-
tion, the actual mechanisms contributing to the association
between hyperthyroidism and stroke are not fully understood.
Hyperthyroidism is associated with prominent cardiovascular
effects such as systolic hypertension, which may contribute to
vascular morbidity and mortality.17 Increased stiffness and
intima-media thickness, 2 indices of atherosclerosis, are
found in the carotid artery in patients with hyperthyroidism,
which are attributable to harmful effects of increased cardiac
output and widened pulse pressure.18,19 There are several
factors contributing to the hypercoagulable state observed
in hyperthyroidism, including increase in blood volume,
increase in the levels of acute phase reactants, and increase in
thrombin and fibrinogen activity.20 Decreased levels of plas-
minogen and tissue plasminogen activator and increased
levels of α2 antiplasmin and thrombin-activatable fibrinolysis
inhibitor lead to decreased fibrinolysis in patients with
hyperthyroidism.20,21 An increase of plasma von Willebrand
factor level in patients with hyperthyroidism indicates endo-
thelial dysfunction and is associated with enhanced platelet
plug formation.22,23 As a result, there are hypercoagulability,
hypofibrinolysis, and endothelial dysfunctions in hyperthy-
roidism, and all may contribute to the increased risk of
thromboembolism.

One strength of this study is the use of a population-based
data set, which enables us to trace all cases of hyperthyroid-
ism and stroke during the study period. Moreover, the large
sample size affords considerable statistical power for detect-
ing real differences between the 2 cohorts. Nevertheless, this
study has a few limitations that should be addressed.

First, hyperthyroidism and stroke diagnoses, which rely on
administrative claims data reported by physicians or hospi-
tals, may be less accurate than diagnoses made according to
standardized criteria. However, to avoid mistaken diagnoses,
we only selected patients who had at least 2 diagnosed episodes of hyperthyroidism during the study period and who have been prescribed antithyroid drugs. In addition, virtually all hospitals in Taiwan capable of admitting stroke patients are equipped with CT or MRI scanners, which increase the validity of stroke diagnoses considerably.

Second, individual information such as smoking, alcohol consumption, dietary factor, body mass index, oral contraceptive use, and family history of stroke, all of which may contribute to stroke, was not available through the administrative data set. In addition, simply including hypertension, atrial fibrillation, and other stroke risk factors in the model may not adequately adjust for the confounding because duration of these risk factors may also contribute to the development of stroke. Smoking promotes the induction of hyperthyroidism in Graves disease and the development of toxic goiter.24 Smoking is also an important risk factor in ischemic stroke. Thus, the association between hyperthyroidism and ischemic stroke may be partially explained by the residual confounding effect of smoking. However, in Taiwan, there is a much higher prevalence of smoking in males than females evident whether in a community study or in a hospital-based study of young people with ischemic stroke.25 Patients with hyperthyroidism were mainly female; therefore, the confounding effect of smoking may be small in this study. Because obesity may be associated with a reduced risk for hyperthyroidism,24 there even may be some underestimation of the odds ratio of the development of stroke among patients with hyperthyroidism. The increased risk of stroke among persons with a positive family history of stroke is related to the expression of genetic heritability of stroke risk factors, a shared environment such as lower physical activity and socioeconomic status, or both.26 However, our selection criteria excluded arterial dissection, inherited coagulopathy, and disorders of clotting factors, which have a familial component in up to 20% of cases,27 and may lessen the confounding effect of family history of stroke. In addition, we took urbanization level and monthly income as socioeconomic indicators in the model to minimize the environmental effect. Further study is needed to clarify these issues and confirm our findings.

Third, there may be a surveillance bias in that patients with hyperthyroidism diagnosed are likely to have more frequent check-ups and, thus, to have their stroke detected by a physician. However, because there has been a lack of clinical evidence linking hyperthyroidism to stroke in young people, in clinical practice, young adults with hyperthyroidism are usually followed-up by their endocrinologists. Hyperthyroidism patients visit a neurologist or emergency specialist only when they have neurological symptoms and then receive brain CT/MRI studies to diagnose stroke. Finally, as a further potential limitation, the study population is mainly composed of Taiwanese of Chinese descent receiving antithyroid drugs, and the results may not be capable of generalization to other populations or patients receiving radioiodine therapy.

Conclusions
Our study shows an association between hyperthyroidism and the risk of subsequent ischemic stroke in young adults. Because a more thorough evaluation may help elucidate the etiology of stroke in young adults,8,10 our results indicate a need for thyroid function testing and detection of hyperthyroidism in surveys to identify the etiology of ischemic stroke in young people.

Disclosures
This study is based in part on data from the National Health Insurance Research Database provided by the Bureau of National Health Insurance, Department of Health, Taiwan, and managed by the National Health Research Institutes. The interpretations and conclusions contained herein do not represent those of the Bureau of National Health Insurance, Department of Health, or the National Health Research Institutes.

References
15. Osman F, Franklyn JA, Holder RL, Sheppard MC, Gammage MD. Cardiovascular manifestations of hyperthyroidism before and after anti-
Hyperthyroidism and Risk of Ischemic Stroke in Young Adults: A 5-Year Follow-Up Study
Jau-Jiuan Sheu, Jiunn-Horng Kang, Hsiu-Chen Lin and Herng-Ching Lin

Stroke. 2010;41:961-966; originally published online April 1, 2010; doi: 10.1161/STROKEAHA.109.577742

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/41/5/961

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Stroke* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Stroke* is online at:
http://stroke.ahajournals.org/subscriptions/