Endovascular Thrombectomy for Acute Ischemic Stroke in Failed Intravenous Tissue Plasminogen Activator Versus Non–Intravenous Tissue Plasminogen Activator Patients

Revascularization and Outcomes Stratified by the Site of Arterial Occlusions

Zhong-Song Shi, MD; Yince Loh, MD; Gary Walker, PhD; Gary R. Duckwiler, MD; for the MERCI and Multi MERCI Investigators

Background and Purpose—Intracranial mechanical thrombectomy is a therapeutic option for acute ischemic stroke patients failing intravenous tissue plasminogen activator (IV tPA). We compared patients treated by mechanical embolus removal in cerebral ischemia (MERCI) thrombectomy after failed IV tPA with those treated with thrombectomy alone.

Methods—We pooled MERCI and Multi MERCI study patients, grouped them either as failed IV tPA or non–IV tPA, and assessed revascularization rates, procedural complications, symptomatic hemorrhage rates, clinical outcomes, and mortality. We also evaluated outcomes stratified by the occlusion site and final revascularization.

Results—Among 305 patients, 48 failed, and 257 were ineligible for IV tPA. Nonresponders to IV tPA trended toward a higher revascularization rate (73% versus 63%) and less mortality (27.7% versus 40.1%) and had similar rates of symptomatic hemorrhage and procedural complications. Favorable 90-day outcomes were similar in failed and non–IV tPA patients (38% versus 31%), with no difference according to occlusion site. Among patients failing IV tPA, good outcomes tended to occur more frequently in revascularized patients (47.1% versus 15.4%), although this relationship was attributable solely to middle cerebral artery and not internal carotid artery occlusions, with no difference in mortality. Among IV tPA–ineligible patients, revascularization correlated with good outcome (47.4% versus 4.4%) and less mortality (28.5% versus 59.6%).

Conclusions—The risks of hemorrhage and procedure-related complications after mechanical thrombectomy do not differ with respect to previous IV tPA administration. Thrombectomy after IV tPA achieves similar rates of good outcomes, a tendency toward lower mortality, and similar revascularization rates when stratified by clot location. Good outcomes correlate with successful revascularization except with internal carotid artery occlusions in tPA-nonresponders. (Stroke. 2010;41:1185-1192.)

Key Words: acute stroke ■ endovascular treatment ■ outcome ■ thrombectomy ■ thrombolysis

Revascularization rates in acute ischemic stroke patients with intravenous tissue plasminogen activator (IV tPA) treatment may be as low as 6% for internal carotid artery (ICA) terminus, 30% for middle cerebral artery (MCA) trunk, and 30% for basilar occlusions.1–3 Nonresponse to IV tPA is associated with poor clinical outcomes.3 Although the initial IV tPA trials did not assess revascularization,4–6 failed IV tPA patients have emerged as a subgroup with persistent occlusions, confirmed by noninvasive or catheter angiography.7–10 The time window defining failed IV tPA has not been established. Because revascularization after IV tPA is typically confirmed by transcranial Doppler ultrasonography within the first hour,11 this may be an appropriate window within which to consider rescue reperfusion therapies for IV tPA nonresponders.

The Mechanical Embolus Removal in Cerebral Ischemia (MERCI) and Multi MERCI trials were prospective, multicenter, endovascular mechanical thrombectomy trials for acute ischemic stroke patients treated within 8 hours of symptom onset who were either ineligible for or failed IV tPA therapy, introducing Merci Retriever thrombectomy as an option for acute ischemic stroke patients.12–15 The Multi
MERICI trial also showed that significant hemorrhage from the combined use of IV tPA and thrombectomy (failed IV tPA group) was not significantly higher than with thrombectomy alone (non–IV tPA group). However, it is possible that the effect of nonresponse to IV tPA varies depending on occlusion location and final revascularization. We pooled data from these 2 trials and analyzed outcomes and revascularization rates in patients with failed IV tPA versus non–IV tPA, stratified by vessel occlusion.

Methods
Pooled data from the previously reported MERICI and Multi MERICI trials were analyzed retrospectively in this study. A family of Merci Retrievers (Concentric Medical, Inc.) was used to extract clot from intracranial vessels. The MERICI trial only enrolled patients who were ineligible for IV tPA. In Multi MERICI, patients receiving IV tPA (0.6 mg/kg or 0.9 mg/kg) within 3 hours of stroke onset were included if persistent vessel occlusion was confirmed by angiography. Intra-arterial (IA) tPA was only allowed in cases of thrombectomy failure after 6 passes or to treat distal embolus after successful proximal thrombectomy.

Patients were dichotomized into failed and non–IV tPA groups. Clinical variables, revascularization rates, symptomatic hemorrhage rates, clinical outcomes and mortality at 90 days, and clinically significant procedural complications were compared. Clot locations were confirmed by catheter angiography and were hierarchically categorized based on the most proximal occlusion location: ICA, MCA, or vertebro-basilar.

Successful revascularization was defined as achieving thrombolysis in myocardial infarction II or III flow in all treatable vessels (ICA, M1, M2, vertebral, and basilar) documented on final post-thrombectomy angiogram. CT or MRI brain imaging was performed at baseline, 24 hours, and at any time there was a decline in patient neurological status. Symptomatic intracranial hemorrhage was defined as a point increase of ≥4 in the National Institutes of Health Stroke Scale (NIHSS) score within 24 hours with evidence of any blood on 24-hour head CT/MRI scan or any intracranial hemorrhage in which no additional NIHSS scores were available followed by patient death. Intracerebral hemorrhages were further categorized as hemorrhagic infarction type I and II, or parenchymal hematoma types I and II, as described previously. Procedure-related adverse events were adjudicated by an independent data safety monitoring board and were defined as vascular perforation, intramural arterial dissection, or embolization of a previously uninvolved territory, symptomatic hemorrhage, and access site complications requiring surgery or transfusion. Clinically significant procedural complications were defined as a procedure complication with decline in NIHSS score of ≥4 points or death, groin complication requiring surgery, or blood transfusion.

Neurological status was quantified by the NIHSS and modified Rankin Scale (mRS) at 90 days. Good outcome at 90 days was defined as mRS ≤2. Additional comparisons of revascularization, procedural complications, good outcomes, and mortality were stratified by the occlusion site, and outcomes were further stratified by final revascularization.

Categorical data were analyzed by the Fisher exact and χ² tests. Continuous data were assessed for normality by the Kolmogorov–Smirnov test; normally distributed continuous data were analyzed by Student t test, and for unevenly distributed continuous data, the Mann–Whitney U test was used. A P value <0.05 was considered statistically significant. No adjustment was made for multiplicity. Statistical analyses were performed using SAS software (version 8.2; SAS Institute Inc).

Results
Demographics
A total of 305 patients were enrolled in the 2 trials: 141 patients in MERICI and 164 patients in Multi MERICI. Forty-eight (15.7%) failed IV tPA, and 257 (84.3%) were not eligible to receive IV tPA before mechanical thrombectomy. In the failed IV tPA group, the mean age was 67.8±12.7 years, and 56.3% (27 of 48) were women. Mean baseline NIHSS score was 19.1±5.5. The mean IV tPA dose was 57±16 mg. In the non–IV tPA group, the mean age was 67.6±16.3 years, and 51.4% (132 of 257) were women. Mean baseline NIHSS score was 19.8±6.7. Baseline characteristics (Table 1) for these 2 populations were similar with the exception of a higher distribution of comorbid dyslipidemia in those failing IV tPA (46.8% versus 31.6%; P<0.05).

Patients with failed IV tPA tended to have a shorter time to intervention and shorter procedure duration (4.0 versus 4.4 hours). Table 1 shows the distribution of occlusion locations, categorized hierarchically by the most proximal occlusion. The distribution of occlusion location was not different between groups, with the MCA being the most common, then the ICA, and then the vertebro-basilar system.

Revascularization Rates
The final revascularization rates were similar between groups (72.9% versus 63.0%), with comparable intergroup IA tPA use. In tPA-nonresponders, revascularization was achieved in 66.7% (12 of 18) of ICA, 74.1% (20 of 27) of MCA, and 100% (3 of 3) of vertebro-basilar occlusions (Table 2). In the non–IV tPA patients, revascularization was achieved in 61.7% (50 of 81), 61.6% (93 of 151), and 76.0% (19 of 25), respectively (Table 3). There was no intergroup difference.

Symptomatic Hemorrhage and Complications
Symptomatic hemorrhage was similar between groups (10.4% versus 8.6%). The 2.1% rate of symptomatic parenchymal hematoma II in patients with failed IV tPA was similar to the 1.9% rate in the non–IV tPA patients. Symptomatic hemorrhage rates by occlusion site were as follows for the failed and non–IV tPA groups, respectively: ICA, 11.1% for both; MCA, 11.1% versus 5.3%; and vertebro-basilar, 0% versus 20.0% (Tables 2 and 3). Symptomatic hemorrhage in ICA occlusions was similar between groups. Although all parenchymal hematoma II hemorrhages occurred with MCA occlusions in the failed IV tPA group, the rates of all symptomatic hemorrhages for both MCA and vertebro-basilar occlusions were similar to the non–IV tPA group.

Hemorrhage by Revascularization Status
In tPA-nonresponders, symptomatic hemorrhage occurred equally by revascularization status (8.6% [3 of 35] versus 15.4% [2 of 13]). In the non–IV tPA group, revascularized patients had less symptomatic hemorrhage (4.3% [7 of 162] versus 15.8% [15 of 95]; P=0.002).

Procedural Adverse Events
Both groups had a similar rate of clinically significant procedural complications (4.2% versus 6.6%). In the failed IV tPA group, procedural complications only occurred with MCA occlusions, at a rate of 7.4%. In the non–IV tPA group, clinically significant complication rates by occlusion site were: ICA, 8.6%; MCA, 4.6%; and vertebro-basilar, 12.0%.
Clinical Outcomes
The rates of good clinical outcomes (mRS, 0 to 2) at 90 days were similar in the failed and non–IV tPA groups (38.3% versus 31.3%). Good outcomes by occlusion site in the failed and non–IV tPA groups were as follows, respectively (Tables 2 and 3): ICA, 29.4% (5 of 17) versus 28.8% (23 of 80); MCA, 40.7% (11 of 27) versus 33.3% (46 of 138); and vertebro-basilar, 66.7% (2 of 3) versus 28.0% (7 of 25). The rate of good outcome at 90 days was similar between groups for each occlusion location.

Outcomes by Postprocedure Revascularization Status
In both groups, good clinical outcomes at 90 days occurred more frequently in subjects for whom revascularization was successful (Figure 1). In the failed IV tPA group, 47.1% (16 of 34) of revascularized patients had a good neurological outcome compared with 15.4% (2 of 13) of nonrevascularized patients ($P=0.09$), powered by MCA (55% versus 0%) but not ICA occlusions (27% versus 33%). In the non–IV tPA group, 47.4% (72 of 152) of revascularized patients had a good neurological outcome compared with 4.4% (4 of 91) of nonrevascularized patients ($P=0.001$). When stratified by occlusion site, a positive relationship existed between revascularization and good outcome, with the exception of ICA occlusions failing IV tPA.

Across cohorts, revascularized patients had a similar rate of good outcomes in both groups (47.1% versus 47.4%), whereas nonrevascularized patients in the failed IV tPA group trended toward better outcome than nonrevascularized patients in the non–IV tPA group (15.4% versus 4.4%);

Table 1. Characteristics of Patients With Failed IV tPA Vs Non–IV tPA

<table>
<thead>
<tr>
<th></th>
<th>Failed IV t-PA (n=48)</th>
<th>No IV t-PA (n=257)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age, years±SD</td>
<td>67.8±12.7</td>
<td>67.6±16.3</td>
<td>0.93*</td>
</tr>
<tr>
<td>Female, %</td>
<td>27 (56.3%)</td>
<td>132 (51.4%)</td>
<td>0.64†</td>
</tr>
<tr>
<td>Hypertension</td>
<td>38 of 48 (79.2%)</td>
<td>181 of 256 (70.7%)</td>
<td>0.29†</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>9 of 47 (19.1%)</td>
<td>52 of 255 (20.4%)</td>
<td>0.85‡</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>22 of 47 (46.8%)</td>
<td>73 of 231 (31.6%)</td>
<td><0.05‡</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>20 of 46 (43.5%)</td>
<td>102 of 250 (40.8%)</td>
<td>0.75†</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>7 of 45 (15.6%)</td>
<td>49 of 254 (19.3%)</td>
<td>0.55‡</td>
</tr>
<tr>
<td>Smoking</td>
<td>11 of 47 (23.4%)</td>
<td>54 of 237 (22.8%)</td>
<td>0.93‡</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>22 of 48 (45.8%)</td>
<td>106 of 254 (41.7%)</td>
<td>0.64†</td>
</tr>
<tr>
<td>Baseline NIHSS score</td>
<td>19.1±5.5</td>
<td>19.8±6.7 (256)</td>
<td>0.51*</td>
</tr>
<tr>
<td>Site of vascular occlusion, %</td>
<td></td>
<td></td>
<td>0.06‡</td>
</tr>
<tr>
<td>ICA</td>
<td>1 (2.1%)</td>
<td>27 (10.5%)</td>
<td></td>
</tr>
<tr>
<td>ICA-T</td>
<td>17 (35.4%)</td>
<td>54 (21.0%)</td>
<td></td>
</tr>
<tr>
<td>MCA M1</td>
<td>21 (43.8%)</td>
<td>129 (50.2%)</td>
<td></td>
</tr>
<tr>
<td>MCA M2</td>
<td>6 (12.5%)</td>
<td>22 (8.6%)</td>
<td></td>
</tr>
<tr>
<td>Vertebro-basilar</td>
<td>3 (6.3%)</td>
<td>25 (9.7%)</td>
<td></td>
</tr>
<tr>
<td>Time to treatment (hours)</td>
<td>3.95±1.16</td>
<td>4.43±1.84</td>
<td>0.08*</td>
</tr>
<tr>
<td>Mean procedure duration (hours)</td>
<td>1.68±0.78</td>
<td>1.93±0.91 (250)</td>
<td>0.08*</td>
</tr>
<tr>
<td>Attempts to remove clot, mean±SD</td>
<td>2.79±1.71</td>
<td>2.94±1.55</td>
<td>0.57*</td>
</tr>
<tr>
<td>IA lytic use, %</td>
<td>17 (35.4%)</td>
<td>80 (31.1%)</td>
<td>0.56‡</td>
</tr>
<tr>
<td>Final TIMI II/III flow</td>
<td>35 (72.9%)</td>
<td>162 (63.0%)</td>
<td>0.25†</td>
</tr>
</tbody>
</table>

*P value is from the 2-sample t test; †P value is from the Fisher exact test; ‡P value is from the likelihood ratio chi-square test.
TIMI indicates thrombolysis in myocardial infarction.

Table 2. Revascularization Rates and Outcomes by Site of Vascular Occlusion in Failed IV tPA Patients

<table>
<thead>
<tr>
<th></th>
<th>Overall (n=48)</th>
<th>ICA (n=18)</th>
<th>MCA (n=27)</th>
<th>Posterior (n=3)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final revascularization, n (%)</td>
<td>35 (72.9%)</td>
<td>12 (66.7%)</td>
<td>20 (74.1%)</td>
<td>3 (100%)</td>
<td>0.32</td>
</tr>
<tr>
<td>Intracranial hemorrhage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symptomatic, n (%)</td>
<td>5 (10.4%)</td>
<td>2 (11.1%)</td>
<td>3 (11.1%)</td>
<td>0 (0.0%)</td>
<td>0.71</td>
</tr>
<tr>
<td>Asymptomatic, n (%)</td>
<td>17 (35.4%)</td>
<td>6 (33.3%)</td>
<td>10 (37.0%)</td>
<td>1 (33.3%)</td>
<td>0.97</td>
</tr>
<tr>
<td>Good outcome at 90 days, n (%)</td>
<td>18 of 47 (38.3%)</td>
<td>5 of 17 (29.4%)</td>
<td>11 (40.7%)</td>
<td>2 (66.7%)</td>
<td>0.44</td>
</tr>
<tr>
<td>Mortality at 90 days, n (%)</td>
<td>13 of 47 (27.7%)</td>
<td>6 of 17 (35.3%)</td>
<td>6 (22.2%)</td>
<td>1 (33.3%)</td>
<td>0.63</td>
</tr>
<tr>
<td>Procedural complication, n (%)</td>
<td>2 (4.2%)</td>
<td>0 (0.0%)</td>
<td>2 (7.4%)</td>
<td>0 (0.0%)</td>
<td>0.31</td>
</tr>
</tbody>
</table>

*P values are from the likelihood ratio chi-square test.
Figure 2 shows 90-day good outcomes stratified by revascularization status, IV tPA status, and occlusion location.

Mortality

There was a trend toward less mortality at 90 days in the failed IV tPA group (27.7% [13 of 47] versus 40.1% [101 of 252]; \(P = 0.08 \)). Mortality rates in patients failing and not receiving IV tPA, by occlusion site, were as follows, respectively (Tables 2 and 3): ICA, 35.3% (6 of 17) versus 50.6% (41 of 81); MCA, 22.2% (6 of 27) versus 33.6% (49 of 146); and vertebro-basilar, 33.3% (1 of 3) versus 44.0% (11 of 25). The rate of 90-day mortality was the same between groups for each occlusion location.

Mortality by Postprocedure Revascularization Status

Nonrevascularized patients had higher rates of mortality in both the failed IV tPA and non–IV tPA groups (Figure 1). Revascularized and nonrevascularized patients in the failed IV tPA groups had similar mortality at 90 days (23.5% versus 38.5%). In contrast, the mortality in the revascularized non–IV tPA group (28.5%) was lower than those not revascularized (59.6%; \(P < 0.001 \)).

Across cohorts, revascularized patients had a similar rate of mortality in both groups (23.5% versus 28.5%), although among nonrevascularized patients, there was trend toward decreased mortality in the failed IV tPA cohort (38.5% versus 59.6%; \(P = 0.23 \)). Mortality results, stratified by revascularization status and site of vascular occlusion, are shown in Figure 3.

Discussion

The combination of IV tPA followed by mechanical thrombectomy achieves similar rates of good outcomes compared with thrombectomy alone. Previous IV tPA use does not increase symptomatic hemorrhage risk or procedure-related complications after thrombectomy. Revascularization rates are similar between the failed and non–IV tPA groups when stratified by occlusion location. Revascularized patients have better outcomes regardless of occlusion site.

Results from 2 different IV thrombolysis studies showed that the ICA, MCA, and basilar artery occlusions respond differently to thrombolytics, and revascularization was more frequent in distal occlusions.\(^1\)\(^-\)\(^2\) Revascularization and good outcomes may be improved by a combined multimodal approach.\(^7\)\(^-\)\(^10\),\(^16\)\(^-\)\(^21\) In a series of 69 patients (50 MCA, 18 ICA, and 1 basilar occlusion) treated by IA thrombolysis after nonresponse to IV tPA,\(^9\) the revascularization rate was 72.5%, similar to the 75% rate in another series of 16 patients with MCA and ICA occlusions.\(^8\)

Two studies also demonstrated improved revascularization with mechanical clot disruption after failed IV tPA. In 32 patients with persistent MCA or ICA occlusion after IA or IV

Table 3. Revascularization Rates and Outcomes by Site of Vascular Occlusion in Non–IV tPA Patients

<table>
<thead>
<tr>
<th>Overall (n=257)</th>
<th>ICA (n=81)</th>
<th>MCA (n=151)</th>
<th>Posterior (n=25)</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final revascularization, n (%)</td>
<td>162 (63.0%)</td>
<td>50 (61.7%)</td>
<td>93 (61.6%)</td>
<td>19 (76.0%)</td>
</tr>
<tr>
<td>Intracranial hemorrhage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symptomatic, n (%)</td>
<td>22 (8.6%)</td>
<td>9 (11.1%)</td>
<td>8 (5.3%)</td>
<td>5 (20.0%)</td>
</tr>
<tr>
<td>Asymptomatic, n (%)</td>
<td>72 (28.0%)</td>
<td>21 (25.9%)</td>
<td>46 (30.5%)</td>
<td>5 (20.0%)</td>
</tr>
<tr>
<td>Good outcome at 90 days, n (%)</td>
<td>76 of 243 (31.3%)</td>
<td>23 of 80 (28.8%)</td>
<td>46 of 138 (33.3%)</td>
<td>7 (28.0%)</td>
</tr>
<tr>
<td>Mortality at 90 days, n (%)</td>
<td>101 of 252 (40.1%)</td>
<td>41 (50.6%)</td>
<td>49 of 146 (33.6%)</td>
<td>11 (44.0%)</td>
</tr>
<tr>
<td>Procedural complication, n (%)</td>
<td>17 (6.6%)</td>
<td>7 (8.6%)</td>
<td>7 (4.6%)</td>
<td>3 (12.0%)</td>
</tr>
</tbody>
</table>

\(P \) values are from the likelihood ratio chi-square test.
thrombolysis, aggressive mechanical clot disruption (angioplasty or stenting, catheter or wire clot maceration, and snare device) achieved successful revascularization (thrombolysis in myocardial infarction II/III) in 87.5% of MCA occlusions and 62.5% of ICA occlusions. In 7 patients with basilar occlusions treated by combined IV tPA and mechanical thrombectomy (snare and suction devices) or IA tPA, 87.5% of patients were revascularized.

In our analysis, successful revascularization of ICA, MCA, and basilar artery occlusions was achieved with the Merci device in IV tPA nonresponders, with no difference in complications. Revascularization rates in our cohort of 66.7%, 74.1%, and 100% of ICA, MCA, and basilar occlusions, respectively, were comparable to those of previous combined approach cohorts.

We demonstrate no difference in the rates of symptomatic hemorrhage between patients either failing or ineligible for IV tPA who are subsequently treated with mechanical thrombectomy. The overall 10.4% rate of symptomatic hemorrhage in the combined IV tPA and thrombectomy group is comparable to the 8.2% rate from the pooled data of IV tPA trials. Our observed rate is also lower than the 12.2% rate observed in IA thrombolysis and 20% rate in IA plus IV thrombolysis from one multicenter study but slightly higher than the 6.2% and 5.8% rates from 2 other series of combined IA and IV thrombolysis.

In our study, an 11.1% rate of symptomatic hemorrhage was found in patients with either ICA or MCA occlusions treated with a combined approach, whereas rates of symptomatic hemorrhage after thrombectomy alone were 11.1% in ICA, 5.3% in MCA, and 20% in basilar artery occlusions. Our rates of symptomatic hemorrhage in ICA occlusions in both groups were lower than the 18.8% rate seen in 16 patients treated with mechanical clot disruption after failed IV tPA.

Patients in our study also experienced parenchymal hematoma II hemorrhage less frequently than described in Inter-
ventional Management of Stroke studies I and II, which occurred in 7.5% and 8.8% of patients, respectively. The decreased incidence of parenchymal hematoma II hemorrhages with the Merci device may be associated with the decreased use of thrombolytic drugs. Despite the theoretically increased risk of symptomatic hemorrhage with mechanical thrombectomy after failed IV tPA, there were numerically fewer procedure-related complications and mortality in the failed IV tPA group than the non–IV tPA group.

We found no difference in good outcomes and mortality between patients undergoing mechanical thrombectomy after failing or being ineligible for IV tPA. Similar rates of good outcomes have been reported in previous combined approach studies. In one study, 33 patients treated endovascularly (IA thrombolysis, Merci device, snare, or angioplasty) after IV tPA demonstrated lower mortality than 30 patients treated with IV tPA alone. In our study, good outcomes and a tendency toward lower mortality, and similar basilar artery occlusions treated with the combined approach. In patients undergoing thrombectomy alone, the rates of good clinical outcomes were similar among the different sites of occlusion, but there was a trend toward lower mortality in patients with MCA occlusions than basilar or ICA occlusions. The only group in this entire cohort with no notable relationship between good outcome and revascularization was in tPA-nonresponders with ICA occlusions. The implications of this finding are unclear at this time, although they may be a result of an uneven distribution of pre-MERCI disability or higher hemorrhage transformation rates after revascularization in this subgroup.

Previous endovascular studies have shown a strong association between successful revascularization and favorable clinical outcomes, and our analysis supports this assertion. In the non–IV tPA group, revascularized patients had a higher proportion of good outcomes and a lower rate of mortality. In addition, patients with revascularized MCA or basilar occlusions had better outcomes and less mortality than the nonrevascularized patients in both treatment groups. With ICA occlusions, good outcome was more frequent in revascularized patients in the non–IV tPA group but not in the failed IV tPA group.

This study has several limitations. Although the MERCI trial did not include failed IV tPA patients (by trial design), they contributed a greater number of non–IV tPA subjects for this analysis, facilitating a more meaningful comparison. Since the MERCI study, there has been progress in the Merci device, operator experience, and case selection, which may favor the failed IV tPA group (all from Multi MERCI). In addition, the failed IV tPA group presented earlier than the non IV tPA group, and since time from symptom onset to tPA bolus has also been shown to affect outcomes in the IV tPA trials, this may have contributed to detected differences.

In conclusion, the risk of symptomatic hemorrhage and procedural complication using the Merci Retriever after failed IV tPA is the same as using thrombectomy alone. Thrombectomy after IV tPA achieves similar rates of good outcomes, a tendency toward lower mortality, and similar revascularization rates when stratified by clot location. Good outcomes correlate with successful revascularization except with ICA occlusions in tPA-nonresponders.

Appendix 1

MERCI Trial Investigators
Wade S. Smith, MD, PhD, University of California, San Francisco was the national principal investigator.

The data safety monitoring board included: chair, Gene Sung, MD, University of Southern California; biostatistician, Phil Hormel, MS; members, Tim W. Malinch, MD, University of Illinois at Chicago, Steven L. Giannotta, MD, University of Southern California, Steven Rudolph, MD, Lenox Hill Hospital, and Fady T. Charbel, MD, University of Illinois at Chicago.

The imaging core laboratory consisted of Paul Kim, MD, University of Southern California.

The writing committee included: Ronald Budzik, MD; Y. Pierre Gobin, MD; Thomas Grobelny, MD; Randall T. Higashida, MD; Chelsea Kidwell, MD; Helmi L. Lutsep, MD; Michael Marks, MD; Gary Nesbit, MD; Marilynn M. Rymer, MD; Jeffrey Saver, MD; Isaac E. Schuman, MD; Wade S. Smith, MD; Sidney Starkman, MD; and Gene Sung, MD.

The site principal investigators, coinvestigators, and study coordinators in order of enrollment are as follows. University of California at Los Angeles Medical Center (22): Sidney Starkman, MD; Gary Duckwiler, MD; Megan Leary, MD; Chelsea Kidwell, MD; Jeffrey Saver, MD; Fernando Vinuela, MD; Reza Jahan, MD; Y. Pierre Gobin, MD; and Judy Guzy, RN. Oregon Health Science University (22): Helmi Lutsep, MD; Stanley Barnwell, MD; Wayne Clark, MD; Ted Lowenkopf, MD; Elizabeth North, MD; Joseph Quinn, MD; Robert Egan, MD; Ted Kuzether, MD; John Roll, MD; George Luh, MD; Gary Nesbit, MD; and Barbara Dugan, RN. Saint Luke’s Hospital (21): Thomas Grobelny, MD; Naveed Akhtar, MD; Steven Arkin, MD; Irene Bettinger, MD; Marilyn Rymer, MD; Charles Weinstein, MD; Michael Schwartzman, MD; Christine Boutwell, MD; and Barbara Gruenenfelder, RN. Massachusetts General Hospital (11): Walter Koroshetz, MD; Johnny Pryor, MD; Neeraj Badjatia, MD; Ferdinando Buonarmino, MD; Lawrence Conrad, MD; David Greer, MD; Raul Nogueira, MD; James Rabinov, MD; Guy Rordorf, MD; Jonathan Rosand, MD; Lee Schwamm, MD; John Sims, MD; Eric Smith, MD; Brian Hoh, MD; Joshua Hirsch, MD; Cenk Ayata, MD; Leigh Hochberg, MD; and Joanie Cacciola, RN. NY Presbyterian Hospital–Columbia (11): John Pile-Spellman, MD; Sean Lavine, MD; Sundeep Mangla, MD; Philip Meyers, MD; and Leslie Schmidt, NP. The Stroke Center at Hartford Hospital (11): Isaac Silverman, MD; Stephen Ohiki, MD; Gary Speigel, MD; Martha Ahlquist, LPN, CCPR; and Dawn Beland, MSN. NY Presbyterian Hospital–Cornell (6): Alan Segal, MD; Al-His Liu, MD; Igor Ougrets, MD; Howard Riina, MD; Y. Pierre Gobin, MD; and Kimberly Salvaggio, NP. University of California at San Francisco Medical Center (6): Randall Higashida, MD; Christopher Dowd, MD; Van Halbach, MD; Vineeta Singh, MD; Nerissa Ko, MD; Jacob Elkins, MD; S. Claiborne Johnston, MD, PhD; J. Claude Hemphill, MSc; David C. Bonovich, MD; Sharon Filler, RN; and Melissa Meighan, RN. Florida Hospital Neuroscience Institute (5): Frank Huang-Hellinger, MD; and Susan Mitchell, RN. Riverside Methodist Hospital (5): Ronald Budzik, MD; Geoffrey Eubank, MD; Erik Arce, MD; Jim Fulop, MD; John Lippert, MD; Tom Davis, MD; J. Kevin McGraw, MD; Peter Pena, MD; and Paula Meyers, RN. Stanford University Medical Center (5): Michael Marks, MD; Huy Do, MD; Gregory Albers, MD; Amie Hsia, MD; David Tong, MD; Christine Wijamn, MD; and Mary Marcellus, RN. Carolina Neurosurgery and Spine (4): Joseph Bernard, MD; Gary DeFilipp, MD; Richard Bellon, MD; Barry McGinnis, MD; Andrea Dietrich, MD; Steve Putnam, MD; and Peggy Boltes, RN. Georgetown University (2): Vance Watson, MD; John DeSimone, MD; Manual Yepes, MD; and Theresa Kowal, RN. University of Maryland (2): Joanne Stallmeyer, MD; Abraham Obuchowski, MD; Greg Zoraski, MD; Marian LaMonte, MD; Marcella Wozniack, MD; and Deborah Schofield, RN. University of Pennsylvania (2): David Lieszekind, MD; Scott Kasner, MD; Brett Cucchiara, MD; Steven Messe, MD;
Robert Taylor, MD; Michael McGarvey, MD; Robert Hurst, MD; Linda Bagley, MD; John Weigle, MD; Jessica Clarke, RN, BSN; Brigham and Women’s Hospital (1): Walter Koroshetz, MD; Kai Frerichs, MD; Steven Feske, MD; Alexander Norbash, MD; Galen Henderson, MD; Farzannah Sorond, MD; John Baker, MD; Peng Chen, MD; and Joanne O’Hara, RN, Latter-Day Saints Hospital (1): John Jacobs, MD; Lisa Yamanse, MD; Duane Blatter, MD; Albert Lee Bahr, MD; Collins Harker, MD; David Pisani, MD; and Kathy Walker, RN, Louisiana State University at Shreveport (1): Claudio Schonholz, MD; Horacio D’Agostino, MD; Anil Nanda, MD; Roger Kelley, MD; and Donna Singleton, RN, State University of New York at Buffalo (1): L. Nelson Hopkins, MD; Lee Guterman, MD; Elad Levy, MD; Jay Howington, MD; Mark Harrigan, MD; Ricardo Hanel, MD; and Annemarie Crumlish, University of North Carolina–Chapel Hill (1): Sten Solander, MD; Ana Felix, MD; Souvik Sen, MD; David Huang, MD; Nydia Melendez, MD; and Susan Wilson, MSN, FNP, Washco Medical Center (1): Paul Katz, MD; Bradley Glenn, MD; Timothy Koci, MD; Anthony Bruno, MD; Mark Algood, MD; and Marta Hefner, RN, Baptist Memorial Clinical Research Center: John Barr, MD; Paul Broadbent, MD; Soren A. Singer, MD; Stephen D. Morris, MD; Sanat Dixit, MD; and Grace Miller, Barrow Neurological Institute: James Frey, MD; Cameron McDougall, MD; Felipe Albuquerque, MD; Mark Hecker, MD; David Fiorella, MD; Seth Larson, MD; Shafeeq Ladha, MD; Darin Okuda, MD; and Mary Harrigan, RN, MN. Baton Rouge General Hospital: Albert Alexander, MD; Joseph Acosta, MD; Jon Darin Okuda, MD; Kevin Callerame, MD; Rodney Hills, MD; and Kimberly Hendricks, RN, MN. Emory University: Frank Tong, MD; Jacques Dion, MD; Michael Frankel, MD; Barney Stern, MD; Owen Samuels, MD; and Marc Chimowitz, MD, University of Texas, Houston: Morgan Campbell, MD; John Choi, MD; Frank Yatsu, MD; Marc Malkoff, MD; James Grotta, MD; Edwin Cacayorin, MD; Christina Hall, MD; Lise Labiche, MD; Elizabeth Noser, MD; Joon Song, MD; Ken Uchino, MD; and Doralene Smith.

Appendix 2

Multi MERCI Trial Investigators

Wade S. Smith, MD, PhD, University of California, San Francisco, was the international principal investigator.

The data safety monitoring board included: chair, Gene Sung, MD, MPH, University of Southern California; biostatistician, Phil Hormel, MS; and members, Tim W. Malisch, MD, Alexian Brothers Medical Center; Steven Rudolph, MD, Maimonides Medical Center; and Arun Amar, MD, Stanford University.

The imaging core laboratory consisted of Paul Kim, MD, University of Southern California; biostatistician, Phil Hormel, MS.

The writing committee included: Ronald Budzick, MD; Gary Duckwiler, MD; Donald Frei, MD; Y. Pierre Gobin, MD; Thomas Grobelny, MD; Randall T. Higashida; Frank Hellinger, MD; Dan Huddle, MD; MD; Chelsea Kidwell, MD; Walter Koroshetz, MD; David S. Lieberskind, MD; Helmi Lutzep, MD; Michael Marks, MD; Gary Nesbit, MD; Marilyn R. Rymer, MD; Jeffrey Saver, MD; Isaac E. Silverman, MD; Wade S. Smith, MD, PhD; Sidney Starkman, MD; and Gene Sung, MD, MPH.

The site principal investigators, coinvestigators, and study coordinators in order of number of patients treated are as follows. St Luke’s Hospital (50): Naveed Akhtar, MD; Thomas Grobelny, MD; Annette Allen, RN; Steven Arkin, MD; Irene Bettinger, MD; Christine Boutwell, RN; RB; Barbara Gruenenfelder, RN; Marilyn Rymer, MD; Michael Schwartzman, MD; and Charles Weinstein, MD. Riverside Methodist Hospital (32): Ronald Budzick, MD; Erik Arce, MD; Albert Berarducci, MD; Tom Davis, MD; Mark Dean, MD; Eric Dolen; Geoffrey Eubank, MD; Jim Fulop, MD; Xiamei Gao-Hickman, MD; John Lippert, MD; William Mayr, MD; J. Kevin McGraw, MD; Paula Meyers, RN; Peter Pena, MD; and Robert Wyatt, MD, Oregon Stroke Center (21): Helmi Lutspe, MD; Stanley Barmwell, MD; Wayne Clark, MD; Barbara Dugan, RN; Robert Egan, MD; Tod Kuehler, MD; Ted Lowenkopf, MD; Gary Nesbit, MD; Elizabeth North, MD; Bryan Peterson, MD; John Roll, MD; and Lisa Yanase, MD. The Stroke Center at Hartford Hospital (14): Isaac Silverman, MD; Martha Ahlquist, LPN, CCRP; Dawn Beland, MSN; Joao Gomes, MD; Stephen Ohki, MD; and Gary Speigel, MD, University of California at Los Angeles Medical Center (12): Sidney Starkman, MD; Latisa Ali; Brian Buck, MD; Dennis Chute, MD; Gary Duckwiler, MD; Judy Guzy, RN; Reza Jahan, MD; Doojin Kim, MD; David S. Lieberskind, MD; Victor Marder, MD; Bruce Ovbiagele, MD; Venkatakrishna Rajajee, MD; Lucass Restrepo, MD; Neres Sanossian, MD; Jeffrey Saver, MD; Scott Selco, MD; Samir Shah, MD; Maria Shukran, RN; Satoshi Tateshima, MD; Amity Towfighi, MD, Paul Vespa, MD; J. Pablo Villablanca, MD; Harry Vinters, MD; and Fernando Vinuela, MD, Swedish (Denver) Medical Center (9): Don Frei, MD; Dan Huddle, MD; Richard Bellon, MD; Christopher Finale, MD; Carol Greenwald, MD; and Don Smith, MD, Florida Hospital Neuroscience Institute (8): Frank Hellinger, MD, Laura Billanovic, RN; and Susan Mitchell, RN. NY Presbyterian Hospital–Cornell (4): Alan Segal, MD; Y. Pierre Gobin, MD; Jeffrey Katz, MD; Igor Ougrets, MD; Howard Riina, MD; and Kimberly Salvaggio, NP, University of California, Foothills Hospital (4): P1. Michael Hill, MD; Philip Barker, MD; Andrew Demchuk, MD; Imanuel Dzialowski, Karyn Fisher, RN; William Hu; Mark Hudon, MD; Will Morrish, MD; Suresh Subramanian, MD; Tim Watson, MD; and John Wong, MD, NY Presbyterian Hospital–Columbia (3): John Pile-Spellman, MD; Sean Lavine, MD; Philip Meyers, MD; and Leslie Schmidt, NP, Georgetown University (3): Vance Watson, MD; John DeSimone, MD; Timea Hodics, MD; Theresa Kowal, RN; Farid Parham, MD; Susan Sutter, MPH; and Manual Yepes, MD, Stanford University Medical Center (2): Frank Marks, MD; Gregory Albers, MD; James Castle, MD; Huey Do; Mahesh Jayerman, MD; Marten Lansberg, MD; Ray McCall, MD; Ayriti Venkatsubraman, MD; and Christine Wijman, MD. University of Alberta, Edmonton (2): Ashfaq Shaibah, MD; Robert Ashforth, MD; Derek Emerly, MD; Faraz Al-Hussain, Muhammad Hussain, MD; Thomas Jeerakathil, MD; Kursheid Khan, MD; Mikael Murtaugh, MD; Nazir Rizvi, MD; Maher Saqur, MD; James Scozzafera, MD; Brenda Scwindt, RN; Muzaffar Siddiqui, MD; and Khalida Bartiq, MD, Baptist Memorial Clinical Research Center: John Barr, MD; Paul Broadbent, MD; Sanat DIXIT, MD; Grace Miller, and Stephen D. Morris, MD, University of Pittsburgh Medical Center: Tudor Jovin, MD, Max Haeger, MD; Michael Horowitz, MD; Vivek Reddy, MD; Tihbasha Santucci, RN; Ken Uchino, MD; Nirav Vora, MD; and Lawrence Wechsler, MD.

Acknowledgments

We thank Phil Hormel, MS, biostatistician, for his programming and assistance of the analysis.

Disclosures

Gary R. Duckwiler is a scientific advisor and stockholder in Concentric Medical, Inc. Gary Walker is an employee of Concentric Medical, Inc.

References

Endovascular Thrombectomy for Acute Ischemic Stroke in Failed Intravenous Tissue Plasminogen Activator Versus Non–Intravenous Tissue Plasminogen Activator Patients: Revascularization and Outcomes Stratified by the Site of Arterial Occlusions
Zhong-Song Shi, Yince Loh, Gary Walker and Gary R. Duckwiler
for the MERCI and Multi MERCI Investigators

Stroke. 2010;41:1185-1192; originally published online April 29, 2010;
doi: 10.1161/STROKEAHA.109.568451
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/41/6/1185

An erratum has been published regarding this article. Please see the attached page for:
/content/43/10/e111.full.pdf

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2016/03/31/STROKEAHA.109.568451.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/
The article, “Endovascular Thrombectomy for Acute Ischemic Stroke in Failed Intravenous Tissue Plasminogen Activator Versus Non–Intravenous Tissue Plasminogen Activator Patients: Revascularization and Outcomes Stratified by the Site of Arterial Occlusions” by Shi et al (Stroke. 2010;41:1185–1192) included an error in Appendix 2. Dr Fawaz Al-hussain’s name and affiliation were incorrect. The correct information appears below as well as in the current online version.

The investigator’s name should appear as Fawaz Al-hussain, MD, King Saud University.
Clinical Outcomes in Middle Cerebral Artery Trunk Occlusions Versus Secondary Division Occlusions After Mechanical Thrombectomy: Pooled Analysis of the Mechanical Embolus Removal in Cerebral Ischemia (MERCI) and Multi MERCI Trials

Zhong-Song Shi, MD; Yince Loh, MD; Gary Walker, PhD; Gary R. Duckwiler, MD; for the MERCI and Multi-MERCI Investigators

背景和目的: 血管内血管再通术对急性缺血性卒中患者有益, 但其益处是否在大脑中动脉 (MCA) 第二段 (M2) 闭塞与 MCA 主干 (M1) 闭塞存在差异尚不清楚。本文对血管造影术确定的 MCA M1 闭塞患者与单独 M2 闭塞患者, 用 Merci Retriever 装置进行机械取栓后的血管再通状态和临床结局进行了比较。

方法: 回顾性分析了脑缺血机械取栓 (MERCI) 和多中心 MERCI 试验中 MCA 卒中患者的汇总数据。患者分成两组: MCA M1 闭塞和单独 M2 闭塞, 评价了两组的基线特征、血管再通率、出血率、并发症、结局和死亡率。

结果: MERCI 和多中心 MERCI 试验中的 178 例 MCA 闭塞患者, 84.3% 为 M1 闭塞, 15.7% 为单独 M2 闭塞。单独 M2 闭塞患者与 M1 闭塞患者相比有更高的血管再通率, 更少的平均机械疏通次数, 且具有更短平均操作时间的趋势。尽管在所有患者中, M2 的结局从数字上看是优于 M1, 但 M2 与 M1 组之间在症状性出血、有临床意义的操作不良反应、90 天良好结局或 90 天的死亡率等方面无统计学差异。在多因素分析中, 最终的血管再通是 90 天良好结局最强的预测因素。

结论: MCA M1 闭塞和单独 M2 闭塞的患者在接受机械取栓后可以达到相对高的血管再通率和良好的临床结局。而事实上, 与 M1 闭塞的患者相比, 单独 M2 闭塞患者具有更高的血管再通率, 需要更少的机械疏通次数且没有增加并发症。

关键词: 急性脑卒中 血管内治疗 大脑中动脉 结局 取栓术

(Stroke.2010;41;953-960. 林森 译 曾进胜 校)
Shi et al Outcomes in MCA Occlusions With the Merci Retriever

栓 (MERCI) 和多中心 MERCI 第一部分试验的汇总分析已经证明，颈内动脉闭塞的患者可以达到相对较高的血管再通率 [17]。然而，它并没有评估 MCA M2 闭塞与 MCA M1 闭塞的机械性血管再通的结局差异。本研究的目的是评价经过血管造影确定的 MCA M1 闭塞与单独 M2 闭塞的急性缺血性卒中患者使用 Merci Retriever 装置进行机械取栓术是否会影响其血管再通状态。同时本研究也旨在通过血管再通状态比较不同组 (M1 vs. M2) 中所有 MCA 闭塞患者使用机械取栓术的安全性和有效性。

方法

MERCI 与多中心 MERCI 试验的汇总数据对确定的急性 MCA 卒中进行了回顾分析。汇总数据包括总共 305 例缺血性卒中患者，其中 141 例来自于 MERCI 试验，164 例来自于多中心 MERCI 试验。这两个试验的详细计划书在之前的研究中已经作了描述 [13-17]。简单来说，纳入试验的患者不是不适合进行 IV tPA 治疗，就是经过导管法血管造影确认接受 IV tPA 治疗后闭塞的血管未再通。试验使用一类 X 系列和 L5 Merci Retriever 装置 (Concentric Medical, Inc, Mountain View, Calif) 从管腔取出血栓试图来使闭塞的颅内血管再通。第一代装置 (X4、X5 和 X6 Retriever) 在两个试验中都有应用，而第二代装置 (L5 Retriever 装置) 只用在多中心 MERCI 试验中。IA tPA 被允许在治疗中装置 6 次疏通依然失败或成功施行近端血栓去除术后，溶解装置无法靠近的远端血栓时应用。两个研究方案中，任何部位的闭塞都不允许使用血管成形术或支架。

本研究纳入经数字减影血管造影确定的单独 MCA M1 和 / 或 M2 闭塞的患者。分析中排除了那些 ICA/MCA 串联闭塞或 ICA-T 闭塞的患者。患者分为 MCA M1 闭塞组和单独 MCA M2 闭塞组。成功的血管再通定义为经数字减影血管造影所确认的所有的应治疗的血管经治疗后达到心肌梗塞溶栓 (TIMI) 血流分级的 II 级或 III 级。CT 或 MRI 扫描在基线、24 小时以及患者神经状态下降的任何时间进行。根据 ECASS 试验的分类，大脑内出血分为出血性梗死 I 和 II 型或脑实质血肿 I 和 II 型。症状性出血是指 24 小时内 NIHSS 分数增加 ≥ 4 分，且 24 小时内头部 CT/MRI 扫描发现有出血的证据，或在除之外无更多合适的 NIHSS 分数基线线时没变化，但患者死亡为任何颅内出血。操作相关的不良事件由独立的数据安全与监督委员会裁定，且被定义为血管穿孔、动脉壁内夹层、或之前未受累区域栓塞、症状性出血，以及需要外科手术或输血处理的并发症。临床上操作相关的严重并发症是指 NIHSS 降低 ≥ 4 分的操作并发症或死亡、需要外科手术或输血处理的腹股沟区并发症。

结果

MCA 闭塞患者的人口学特征

在 MERCI 和多中心 MERCI 试验中，对 178 例经血管造影确定为 MCA 闭塞的患者进行了治疗。其中 80 例患者来自 MERCI 试验，98 例来自多中心 MERCI 试验。平均年龄 69.0 岁 (SD 15.7), 103(57.9%) 为女性患者。平均基线 NIHSS 分数是 18.8 分 (SD 5.8), 范围为 9 至 40 分。队列中 27(15.2%) 例患者接受了 IV tPA 治疗并在进行机械取栓前均未再通；剩余的 151 例患者则不适合接受 IV tPA 治疗。患者从卒中起病至器械进入动脉的平均时间为 4.3 小时 (SD 1.6), 范围为 0.7 至 10.8 小时。

178 例患者中，84.3%(n=150) 表现为单独 MCA M1 闭塞或 M1/M2 合并的闭塞，15.7%(n=28) 表现为单独 MCA M2 闭塞。在 150 例 MCA M1 闭塞患者中，73 例来自 MERCI 试验，77 例来自多中心 MERCI 试验。在 28 例 MCA M2 闭塞患者中，7 例来自 MERCI 试验，21 例来自多中心 MERCI 试验。各组患者的基线特征 (年龄、性别、NIHSS 分数、起病至进入动脉的时间以及联合 tPA 的使用) 均没
有统计学差异。MCA M1 闭塞患者可能更易患冠状动脉病，且凝血酶原时间更短，收缩压更低（表1）。在M1组中，最常使用X6和L5装置（均为44.7%），X5（34.0%）和X4（6.7%）的使用则较少。在M2组中，最常用的是L5装置（53.6%），紧接着是X6（28.6%），之后是X5（25.0%），未使用X4。两组中，7%的患者在评定其基线NIHSS分数时应用了镇静剂。尽管与M1组（52.5%）相比，M2组（73.1%）患者存在明显更高比例的严重或完全性失语，但两组NIHSS的运动评分部分无统计学差异。

血管再通率

经Merci治疗后的即时血管再通率（TIMI II/III血流分级）在MCA M1组与单独M2组中分别为46.0%和71.4%（表2）。包括接受联合治疗的患者在内，单独MCA M2组的最终血管再通率高于MCA M1组（82.1% vs. 60.0%）。另外，相对于MCA M1闭塞，单独MCA M2闭塞所需的疏通次数更少（2.1 vs. 3.1）并具有平均操作时间更短的趋势（1.6 vs. 1.8小时）。

良好结局和死亡率

尽管单独MCA M2闭塞组的良好结局与MCA M1闭塞组相比，从数字上看具有较高的比例（40.7% vs. 33.3%），但两组90天良好临床结局（mRS≦2）并无统计学差异（表2）。一般来说，远端动脉闭塞期有更好的结局，但在本系列中，左侧M2闭塞占67.9%而左侧的M1闭塞只有47.3%。有认为左侧大脑半球梗死患者长期预后差，而本组M2闭塞左侧更多。

两组90天的死亡率也无统计学差异，然而，从数字上看，单独MCA M2闭塞组比MCA M1闭塞组低（25.9% vs. 32.9%；表2）。

出血并发症

两组颅内出血率无统计学差异（M1组36.7% vs. M2组42.9%）。同样，两组的院前出血率也无统计学差异（M2组3.6% vs. M1组6.7%）。从数字上看，M2闭塞患者的仅有临床操作相关不良反应比例比M1更低（3.6% vs. 5.3%）。

多元Logistic回归分析

与先前的MERCI试验分析相似，年龄、基线NIHSS和操作后的血管再通状态均为90天良好临床结局的预测因素。具体结果见表3。最终的血管再通状态是良好结局最强的独立预测因素（OR为30.91）。
血管再通与血管未再通患者的比较

在所有 MCA 闭塞的患者中，血管再通的比未再通的患者具有更高比例的 90 天良好结局、更低的死亡率和症状性出血、疏通次数更少和操作时间更短（表 4）。年龄、NIHSS 分数、危险因素和入院时实验室检查结果等基线特征在最终血管再通与未再通患者之间是相似的。

讨论

本研究结果表明应用 Merci 装置进行机械取栓后，MCA M1 闭塞或单独 M2 闭塞患者能达到较高的血管再通率和良好的临床结局。单独 M2 闭塞患者的血管再通率更高，并具有平均操作时间更短的趋势。

越来越多的证据显示血管再通率和良好临床结局受血管闭塞位置的显著影响。IV 和 IA 溶栓的研究发现，溶栓治疗对 MCA 闭塞比对 ICA 和基底动脉闭塞更有效果 [9,11]。与先前的 MERCI 和多中心 MERCI 研究分析相比，经机械取栓治疗后的 MCA M1 组 60% 的血管再通率与 ICA 闭塞组 63% 的血管再通率相似，低于椎基底动脉闭塞组 78% 的血管再通率 [17,18]。而单独 MCA M2 闭塞 82% 的血管再通率则明显高于其他位置的闭塞。

本研究中机械取栓治疗 MCA 闭塞后，63.5% 的血管再通率高于其他试验中只用 IV 溶栓治疗的患者。有研究报告，起病 6 小时内 18% 的 MCA 闭塞性栓塞患者可出现由经颅多普勒超声确定的自发再通 [19]。在 PROACT II 研究中，卒中起病后 6 到 8 小时，大约 18% 的接受静脉肝素治疗后的急性 MCA 闭塞安慰剂组患者，可发生经血管造影确定的自发再通 [5]。另一项基于 82 例 MCA 主干闭塞患者的研究，采用 TIMI 血流分级和 MR 血管造影确定自发血管再通，其结果显示起病后 24 小时，IV 溶栓组比未溶栓组具有更高的自发血管再通率 [20]。IV 溶栓组和未溶栓组的局部和全部血管再通率（TIMI II 级和 III 级）分别为 38.5% 和 24% [20]。

尽管在已发表的 IV 溶栓试验数据中，MCA M1 与单独 M2 闭塞的血管再通状态差异并不十分显著，但本研究中单独 MCA M2 闭塞的血管再通优于 M1 闭塞，与最近两篇 IV 溶栓研究一致 [9,10]。根据经颅多普勒超声标准，MCA M2 与 M1 闭塞患者接受 IV tPA 治疗后，2 小时的完全再通率分别为 44.2% (50/113) 和 30% (49/163) [9]。另一项采用 CT 血管造影和 / 或经颅多普勒超声监测的研究，IV tPA 24 小时后 53% 的 M1 闭塞患者 (n=32) 和 68% 的 M2 闭塞患者 (n=19) 达到完全再通 [10]。对 IV tPA 后进行取栓治疗与只进行取栓治疗的血管再通率比较超过了我们目前研究的范围。取栓前的 IV tPA 治疗会软化凝块，促进 Merci 装置穿透凝块和取回。对不同位置动脉闭塞采用 IV tPA 后再行机械取栓治疗，这种疗法产生的潜在血管再通的益处应在以后的研究中进行探讨。

与 PROACT II 研究中接受治疗的 121 例患者相比，本研究中平均基线 NIHSS 和平均年龄均较高于 PROACT II（基线 NIHSS：18 vs. 17；年龄：69 vs. 64 岁），但本组患者与其有相似的血管再通率（MERCI 多中心 MERCI 63.5% vs. PROACT II 66%）。90 天良好结局（34.5% vs. 40%）和死亡率（31.8% vs. 25%），以及更低的症状性出血（6.2% vs. 10.0%）[5]。最近的一项研究全面比较了 MERCI 多中心 MERCI
和 PROACT 的数据[21]。在对 MCA 闭塞患者使用尿激酶 IA 溶栓治疗的研究中，血管造影显示有 57 例患者为 MCA M1 闭塞，21 例为 M2 闭塞，22 例为 M3 或 M4 闭塞。与我们的研究相比，该研究报告了更高的血管再通率（76%），更好的 90 天良好结局（68%），更低的死亡率（10%）以及相似的严重性出血（7%）。该研究还显示良好的结局与入院时低的卒中评分（中位基线 NIHSS，14）和更小的年龄（平均年龄，61 岁）相关。

IA 溶栓研究中，MCA 闭塞患者血管再通情况由血管造影记录；然而，由 MCA M1 闭塞对单独 M2 闭塞分层的血管再通状态和临床结局并未在这些随机临床试验中报告[5,8]。在一个对卒中患者使用尿激酶 IA 溶栓治疗的研究中，147 例 MCA M1 闭塞和 57 例 M2 闭塞患者的血管再通率 (TIMI II 级和 III 级）分别为 77.6% 和 63.2%[11]。在该研究中，单独 M2 闭塞与 M1 闭塞相比，具有更低的血管再通率，这与我们研究的结果不同。目前尚不清楚这个差异是否与 IA 溶栓和机械取栓不同的血管内治疗方式相关。

本研究也进一步证实了成功的血管再通与取栓术后 90 天时得到良好的临床结局相关。我们发现，在 M1 闭塞和单独 M2 闭塞中，成功的血管再通与更高的效益风险比相关。单独 M2 闭塞患者比 M1 闭塞患者有更好临床结局的倾向。单独 M2 闭塞的这些有益作用也被一项 IV tPA 溶栓治疗患者的经颅多普勒超声研究证实[9]。卒中介入治疗试验 I 和 II 的汇总数据显示单独 M2 闭塞患者其良好的临床结局独立于血管再通状态之外，因为尽管存在不完全的再通和再灌注，部分 M2 闭塞患者的仍获得良好的临床结局[6-7,23]。尚不清楚单独 M2 闭塞患者其良好的临床结局倾向是否与更高的血管再通率或更小的缺血区域相关联。可以推测 M2 与 M1 闭塞中，更多的侧支循环是某一既定病人达到良好临床结局的可能潜在因素。尽管 M2 组相比 M1 组，存在具有更好结局的倾向，但这个差异可能因更高的左侧 M2 闭塞频率而抵消 (67.9% vs. 47.3%)。研究的纳入标准要求必须具有高的基线 NIHSS 分数，因此优势半球的 M2 闭塞更可能入组。

个例报告提出如果闭塞的 M2 分支经由 IA 溶栓开放，则可以用 microsnare 或 Attrater-18 装置进行机械治疗而重新打开它们[24,25]。然而，如今并不推荐使用这些装置进行颅内大动脉血流的恢复。最
Outcomes in MCA Occlusions With the Merci Retriever

Shi et al

Near, another can be from the MCA M1 and MCA M2 by using a different technique -Penumbra system. This makes it difficult to determine whether this technique is better than the Merci Retriever.