Pumps, Aqueducts, and Drought Management
Vascular Physiology in Vascular Cognitive Impairment

Randolph S. Marshall, MD; Ronald M. Lazar, PhD

Abstract—Vascular cognitive impairment has been traditionally defined by structural pathology, an accumulation of infarcts, leading to progressive cognitive decline. Recent evidence, however, suggests that cognitive impairment may be independently mediated by hemodynamic dysfunction, including global and hemispheric hypoperfusion and altered cerebral blood flow regulation. In this review, we examine evidence for the contribution of hemodynamic impairment to cognitive dysfunction in the setting of large vessel disease, cardiac failure, and microvascular disease. If there is a hemodynamic component of vascular cognitive impairment, then treatments proposed to correct impaired vascular physiology may reasonably be expected to treat the cognitive dysfunction as well. (Stroke. 2011;42:221-226.)

Key Words: brain recovery ■ cerebral hemodynamics ■ cognitive impairment ■ EC/IC bypass ■ reperfusion ■ transcranial Doppler ■ vascular cognitive impairment ■ VCI ■ white matter disease

The ancient Romans had an exquisitely engineered aqueduct system to supply water to their cities. Originating in surrounding hills, the system required a descent in elevation of exactly 34 cm/km to keep the water flowing smoothly. Too steep a gradient and the water would overflow; too flat and the system would clog. For hundreds of years, the system brought >50 million gallons of water per day to the citizens of Rome for drinking, bathing, and irrigation. Like with the historical water needs of the citizens of Rome, brain tissue requires a well-regulated system to maintain functional homeostasis. Obstructed conduits, inadequate pumping force, and dysfunctional vessels can reduce flow or alter homeostatic blood flow regulation. Cognitive function, perhaps more than any other brain process, appears to be sensitive to changes in hemodynamic state.1

Structural Versus Hemodynamic Impairment
Vascular cognitive impairment (VCI) has been difficult to characterize because of its multifactorial etiology and poor standardization of measurement. Structural pathology of both Alzheimer disease (AD) and vascular dementia is reported to be present in a high percentage of cases diagnosed clinically as either 1 condition or the other; infarcts and white matter lesions are found in brains of 60% to 90% of patients with AD, and plaques and tangles are found in more than one third of those diagnosed with vascular dementia.2 Among vascular cases, both the accumulation of small infarcts3 and the strategic placement of large infarcts4 are well described to produce cognitive impairment. Although structural pathology is unquestionably important in the development of dementia, there is burgeoning evidence that cerebral hemodynamic impairment may be a direct mediator of cognitive dysfunction and decline.

Hemodynamic abnormalities, specifically cerebral hypoperfusion and impaired cerebral vasomotor reactivity (CVR), are present in a variety of cerebrovascular conditions. Our central thesis for the purposes of this review is that whereas structural pathology may reflect irreversible, end-organ damage leading to permanent cognitive dysfunction, hemodynamic causes of cognitive decline may be reversible and thus a target for treatment. The purpose of this review is to consider the evidence for hemodynamic mediation of cognitive dysfunction. We examine vascular-related cognitive impairment at 3 levels of ischemic disease: hemispheric hypoperfusion caused by carotid occlusive disease, global cerebral hypoperfusion produced by cardiac failure, and microvascular pathology leading to loss of vasomotor reactivity and cerebral blood flow (CBF) autoregulation.

Definition of VCI
The set of clinical elements that defines VCI continues to be debated.5 Although there is an historical emphasis on memory dysfunction in dementia, newer evidence shows that small-vessel disease in the frontal lobes may be associated with disruption of executive function and processing speed in the absence of difficulties in new learning and amnestic func-
tion. Memory abnormality is therefore not necessary for a diagnosis of VCI, reflected in the recently established harmonization standards. However, because AD and VCI can co-occur and interact in a manner not identifiable until pathology is verified, establishing “pure cases” of VCI remains problematic. In addition, some cardiovascular conditions are associated with hippocampal atrophy contributing directly to memory loss. We therefore take the position that the rubric of vascular cognitive disorders is an umbrella concept, encompassing any vascular condition that is sufficient to produce cognitive change.

An important step forward has been the recognition that vascular dementia, like AD, represents only 1 end of the severity continuum. At the other end lies mild deficits with minimal impact on daily activities, sometimes referred to as vascular cognitive impairment no dementia or nonamnestic mild cognitive impairment. These are important to identify because longitudinal studies show that individuals with such early changes are at significant risk for developing more disabling syndromes. Mild syndromes were not recognized as VCI initially because of the belief that the end product of the responsible vascular disease is neuronal death, whether from large territory infarction or lacunar disease. Consequently, a major underlying assumption is that function, like brain tissue, is irretrievably lost. There is evidence, as discussed subsequently, to contradict this assumption. Finally, it is interesting to note parallels between the dynamic nature of cognitive functions such as information processing, attention and working memory, and the dynamic physiology of blood flow; these cognitive functions appear uniquely susceptible to hemodynamic compromise, which may help further distinguish cognitive dysfunction originating from vascular causes as opposed to cortical degenerative causes like AD.

Hemispherical Hypoperfusion as a Reversible Pathology for Cognitive Decline

Perhaps the clearest evidence for a cerebral hemodynamic effect is in large-vessel disease producing hemispherical hypoperfusion. Here, a drop in perfusion pressure to a cerebral hemisphere supplied by a blocked carotid artery induces a series of well-described hemodynamic responses, including dilation of cerebral arterioles and increase of oxygen extraction fraction to preserve aerobic metabolism. Further reduction in perfusion pressure results in ischemia and then frank infarction. These hemodynamic responses, part of the autoregulatory process, allow reversibility of ischemia and, at least under some circumstances, recovery of brain function.

The association between carotid occlusive disease and dementia was first reported by Miller Fisher in 1954 in a patient with bilateral carotid occlusion and progressive dementia. Many carotid treatment studies have compared pre- and postoperative cognitive performance with inconsistent treatment effects on cognition. Systematic reviews of the impact of carotid disease on cognitive dysfunction have been inconclusive. A recent review of 32 papers in which cognition was assessed before and after carotid endarterectomy or carotid artery stenting found that 5 reported cognitive decline, 6 documented no significant change, and in the remaining, percentages of improvement varied across cognitive domains. Unfortunately, measurement of cognitive impairment varied widely, and none of the studies measured blood flow.

The argument that hypoperfusion is an independent cause for cognitive impairment in carotid occlusive disease is strengthened by studies reporting cognitive impairment in patients with carotid stenosis in the absence of frank infarction. Bakker et al reported cognitive impairment in 39 cases with cerebral or retinal transient ischemic attacks but no stroke on MRI. Johnston et al examined the relationship between side of carotid stenosis and cognitive impairment among patients with high-grade carotid disease but no infarction. Cognitive dysfunction and cognitive decline, measured by Mini-Mental State Examination, were correlated with left but not right internal carotid artery stenosis. The authors concluded that because the Mini-Mental State Examination is more sensitive to left hemispherical dysfunction, the stenosis was more than a marker of generalized cognitive dysfunction but a causal factor in the dysfunction. Although the association was statistically significant, cognitive impairment occurred in only 34% of patients with severe stenosis, whereas the remaining patients with stenosis had normal cognition. Again, however, hemodynamic measurements were not made.

Blood flow was measured by Tatemichi et al in a 55-year-old man with bilateral internal carotid artery occlusions presenting with a subacute onset of severe behavioral and cognitive changes. Quantitative CBF and positron emission tomography studies showed a 40% to 50% reduction in blood flow and metabolism. After extracranial–intracranial bypass, the patient demonstrated neuropsychological improvement accompanied by significant increases in CBF and metabolism. In a larger case series, 25 patients with unilateral carotid occlusion and poor neuropsychological performance underwent extracranial–intracranial bypass. Cognitive improvement was associated with increased CBF, increased CVR, and decreased oxygen extraction fraction. The possibility that extracranial–intracranial bypass can improve cognition or prevent its decline is being formally tested in the National Institute of Neurological Disorders and Stroke-sponsored Randomized Evaluation of Carotid Occlusion and Neurocognition (RECON) trial, an ancillary study of the Carotid Occlusion Surgery Study (COSS). In this study, positron emission tomography measurements are taken in all patients with recently symptomatic carotid occlusion. Among those with increased oxygen extraction fraction, indicating so-called Stage II hemodynamic failure, half receive extracranial–intracranial bypass and half best medical therapy alone. Hemisphere-specific and global cognitive tests are administered at baseline and 2 years after randomization. The differences in 2-year cognitive scores between the surgical and medical groups will determine whether direct cerebral hemodynamic treatment of patients with known hemodynamic failure can benefit from hemispherical reperfusion. Demonstration of a positive effect of revascularization on cognition would constitute the first proof of reversible cognitive impairment due to a hemodynamic cause within the context of a randomized clinical trial.
Cognitive Impairment in Cardiac Disease Due to Global Cerebral Hemodynamic Dysfunction

Congestive heart failure (CHF) is a model for the effects of whole-brain hypoperfusion on cognitive dysfunction. Although cardiac embolism and decreased CBF may both contribute to cognitive impairment, as heart failure progresses to more severe stages, reduced CBF correlates with a rising prevalence of cognitive dysfunction. Choi et al found that global CBF was 19% less in patients with severe CHF than in control subjects. Unlike embolic stroke, which produces focal deficits, low CBF affects more complex cognitive tasks such as memory, attention, and executive skills subserved by distributed brain regions.

Zuccala et al were among the first to show that cognition was affected by cardiac failure. Among 57 elderly individuals with chronic CHF, poorer cognition was associated with left ventricular ejection fraction ≤30%. With finer-grained neuropsychological assessment, it has become increasingly apparent that not all cognitive functions are equally susceptible to global hemodynamic compromise. Vogels et al studied individuals with New York Heart Association Stage II and III CHF. Patients with CHF had greater deficits in widely distributed processing skills, whereas focal cognitive functions such as language were not different between patients and control subjects. We studied 116 consecutive candidates for transplant and compared their function with age-matched norms. We also found that more broadly dispersed spheres of cognitive functions were affected in patients with severe heart failure.

The opportunity to confirm further the relationship between cerebral hemodynamics and cognition has come from the restoration of cardiac output through medical or surgical intervention. Zuccala et al studied retrospectively 1220 older patients with heart failure and found that those starting angiotensin-converting enzyme inhibitors, a drug class known to have positive effects on CBF, had an increased probability of improving cognitive function during hospital stay. Other evidence has been derived by comparisons before and after cardiac transplantation. Several recent studies showed cognitive benefit after transplantation. Mechanistic support for improvement in CBF that would account for concomitant changes in cognition has been provided by blood flow and transcranial Doppler studies.

Whereas cerebral hypoperfusion seems to mediate cognitive impairment and recovery, there appears also to be a risk to restoring whole-brain blood flow too quickly, similar to reperfusion injury after carotid endarterectomy or angioplasty. We studied 69 consecutive patients who had just undergone implantation with a left ventricular assist device and found that 19 developed neurological dysfunction, mainly cognitive slowing and inattention. The risk of this condition correlated with an increased cardiac index, the effect attributed to mild cerebral edema. Reduction of left ventricular assist device outflow in 16 of the 19 symptomatic patients led to improvement in symptoms in 14 of them.

Collectively, the evidence from these heart failure studies suggests that optimization of cognitive function occurs in the middle range of CBF (Figure 1). At the higher and lower ends of the spectrum, there is degradation of function; normalizing CBF reverses the cognitive dysfunction.

Cognitive Impairment Related to Vascular Dysfunction in Microvascular Ischemia

In the absence of chronic hemispheric hypoperfusion caused by large-vessel stenosis or global cerebral hypoperfusion produced by cardiac failure, the cerebral microvasculature may undergo altered hemodynamic function in patients with stroke risk factors. Hypertension, diabetes, and direct effects on the endothelium have been shown to be associated with changes in CBF and vasoreactivity in this population. Demonstrating a causal link between these hemodynamic changes and cognitive impairment has been more difficult to prove, however, in part because of the co-occurrence of small-vessel infarction. Nonetheless, the association is worth considering because, like global and hemispheral hemodynamic impairment, the potential exists for ameliorating cognitive impairment by reversing abnormal microvascular hemodynamics.

Hypertension has been the most studied risk factor for cognitive impairment because of its effects on vascular function. In 1 study, carotid femoral pulse wave velocity, a measure of arterial stiffness, correlated with poorer scores on the Mini-Mental State Examination among elderly patients with never-treated essential hypertension. Silent infarction was not evaluated in this study, however, so it may have been that those with greater arterial stiffness had silent infarcts to explain the cognitive impairment. A similar study in elderly and middle-aged men showed pulse wave velocity associated with lower processing capacity and executive functioning and increased intima-media thickness, a preatherosclerotic marker correlating with memory impairment.

With no imaging in this study, however, frank infarction as an intermediary between vascular dysfunction and cognitive impairment could not be ruled out. In the Johnston study described in the carotid section, it was also shown that intima-media thickness was associated with cognitive impairment, suggesting that...
intima-media thickness may be a nonlateralizing marker of vascular dysfunction that was contributing to cognitive impairment.

In addition to hypertension, hypotension may also play a hemodynamic role in the development of cognitive impairment. This hypothesis has appeal because CBF is known to be low in patients with dementia, and cerebral hypoperfusion appears to be associated with cognitive impairment in large-vessel disease and cardiac failure as also discussed previously. Low CBF imaged in dementia may be a reflection of lower metabolism or a consequence of the dementing process, however.

An additional pathophysiological link between hemodynamics and cognitive impairment concerns white matter hyperintensities (WMHs). There is evidence that WMHs arise from chronic hypoperfusion. CVR has also been shown to be lower when WMHs are present. Regardless of cause, these pathological changes have been associated with cognitive decline. An association between WMH and impaired hemodynamic function was demonstrated by Fu et al who investigated patients >60 years of age with WMH on MRI but no stroke or significant large-vessel stenosis. They showed that extent of these lesions correlated inversely with CVR measured by transcranial Doppler.

Other stroke risk factors have also been linked to impaired cerebral hemodynamics. Giannopoulos et al recently showed an association between metabolic syndrome and impaired CVR in 83 patients in the hemisphere opposite to that supplied by a stenotic carotid artery, suggesting that metabolic syndrome, with its associated endothelial effects, alters cerebral hemodynamics more broadly than through unilateral hemispheric hypoperfusion. Furthermore, in cerebral autosomal dominant arteriopathy with subcortical infarction and leukoencephalopathy (CADASIL), a condition associated with WMH and early dementia, flow-related vascular dysfunction appears to occur even before vascular smooth muscle degeneration and granular osmophilic material deposition has taken place.

Given the evidence that cerebral hemodynamic dysfunction appears to have an independent association with cognitive impairment, the question arises whether treatment of the hemodynamic impairment can reverse cognitive impairment. Blood pressure management may be an effective way to reverse the effects of hemodynamic impairment. In hypertensives who develop dementia, the prevention of hypotension has been shown to protect against cognitive decline. In this study of patients with vascular dementia, those who had hypertension kept below systolic pressure of 135 mm Hg had deterioration of cognitive function, whereas those kept 135 to 150 mm Hg improved. In addition, some have evaluated antihypertensives with known positive effects on CBF. The Cardiovascular Health Cognition substudy showed that patients taking centrally acting angiotensin-converting enzyme inhibitors had a 65% per year reduction in decline of Mini-Mental State Examination scores compared with others taking nonblood flow-related antihypertensives. An ongoing National Institutes of Health-sponsored, randomized clinical trial is assessing cognitive function, CBF, and CVR among 100 elderly, hypertensive patients taking 1 of 3 antihypertensives with varying effects on CBF.

Conclusions
The relationship between vascular pathophysiology and cognitive impairment is complex, as shown in Figure 2. Stroke risk factors contribute to vascular changes, which in turn cause both structural pathology and chronic hemodynamic failure. These end-organ effects in the brain produce cognitive impairment either directly or through the further influence of autoregulatory loss and accumulation of WMH. Genetic factors and AD pathology may further mediate the effects of vascular dysfunction on cognitive impairment. Although the prevention of structural pathology will remain an important tenet in the treatment of VCI, the evidence for the relationship between reversibility of hemodynamic dysfunction and the reversibility of cognitive impairment appears strong enough to warrant serious clinical attention and continued scientific study.

Future Directions
Based on the successes and failures of clinical studies discussed in this review, we propose that certain key variables

Risk factors
Primary pathology
Vascular changes
End organ effects
Mediating factors
Behavioral outcome

Figure 2. Model for the pathophysiology of cognitive impairment. Dotted lines indicate potentially reversible hemodynamic pathways.
Table. Critical Variables to Include in Studies of Cerebral Hemodynamic Impairment and Cognitive Dysfunction

<table>
<thead>
<tr>
<th>Variable</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantifiable hemodynamic measure</td>
<td>PET, ASL MRI, TCD vasoreactivity, fMRI-BOLD hypercapnia response</td>
</tr>
<tr>
<td>Cognitive tests sensitive to blood flow and specific to disease state</td>
<td>Tests of attention and executive function; hemisphere-specific for carotid disease</td>
</tr>
<tr>
<td>Structural imaging for territorial stroke, small-vessel infarcts, microbleeds, and WMHs</td>
<td>FLAIR, T2-weighted, gradient echo MRI</td>
</tr>
<tr>
<td>Covariates that can alter cognition</td>
<td>Depression, hepatic disease, renal failure</td>
</tr>
</tbody>
</table>

PET indicates positron emission tomography; ASL, arterial spin labeling; TCD, transcranial Doppler; fMRI, functional MRI; BOLD, blood oxygen level-dependent; FLAIR, fluid-attenuated inversion recovery.

should be present in any future study of the relationship between blood flow and cognition (Table). First, the study must include a quantifiable measure of cerebral hemodynamics such as blood flow by positron emission tomography or arterial spin labeling MRI, autoregulation by transcranial Doppler vasoreactivity, or hypercapnia-induced blood oxygen level-dependent changes by functional MRI. Second, the cognitive assessment must include functions that are sensitive to hypoperfusion (eg, attention and executive function) and specific to the disease state being studied (eg, hemisphere-specific for carotid disease, bihemispherical functions for cardiac failure). Third, presence prior strokes, small vessel infarcts, microbleeds, and WMHs must be examined as covariates. Fourth, depression, renal failure, hepatic dysfunction, pulmonary disease, and other variables that can independently alter cognition must be controlled for or serve as exclusions. Only with careful study design and thoughtful consideration of potentially relevant variables will the complex relationship between blood flow and cognition be disentangled enough to alter our patients’ clinical course and move the field forward.

Sources of Funding

This work was supported by the Doris and Stanley Tananbaum Family Foundation and by National Institute of Health/National Institute of Neurological Disorders and Stroke R01 NS048212 (R.S.M.) and National Institutes of Health/National Heart, Lung and Blood Institute 1P50 HL077096 (R.M.L.).

Disclosures

None.

References


Pumps, Aqueducts, and Drought Management: Vascular Physiology in Vascular Cognitive Impairment
Randolph S. Marshall and Ronald M. Lazar

Stroke. 2011;42:221-226; originally published online December 9, 2010;
doi: 10.1161/STROKEAHA.110.595645

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/42/1/221

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2012/03/12/STROKEAHA.110.595645.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/
Section Editors: Philip B. Gorelick, MD, MPH, and Leonardo Pantoni, MD, PhD

Pumps, Aqueducts, and Drought Management
Vascular Physiology in Vascular Cognitive Impairment

Randolph S. Marshall, MD; Ronald M. Lazar, PhD

(Stroke. 2011;42:221-226.)

Key Words: brain recovery ■ cerebral hemodynamics ■ cognitive impairment ■ EC/IC bypass ■ reperfusion ■ transcranial Doppler ■ vascular cognitive impairment ■ VCI ■ white matter disease
롭물화학 원인들은 가역적이며 치료의 목표가 될 수도 있다"는 것이다. 저자들은 혈관 관련 인지장애를 경동맥 패색에 의한 대뇌반구 관류저하, 심근경색으로 인한 전뇌 관류저하, 허혈관 운동 반응성 및 CBF 자가조절의 소실을 초래하는 미세혈관 병소의 3가지로 구분하여 검토하였다.

VCI의 정의

VCI를 정의하는 임상적 요소들에 대한 동일은 지속적인 논쟁의 대상이 되고 있다. 1) 초기에서 기억장애(memory dysfunction)가 여타적으로 강조되고 있으나, 전두엽의 소화전 절환 실패 기관 이상, 새로운 학습과 기억 기능의 이상을 동반하지 않는 처리 속도 이상과 연관된 새로운 증상들이 보고되고 있다. 2) 따라서 최근에 확립된 VCI의 임상적 기준에서 도 기여 이상이 VCI의 진단에 반드시 필요한 것이 아니라는 것이 반영되었다. 그러나 AD가 VCI가 별리 소견이 확인되기 전까지는 동시 발생하거나 상호촉진하는 것을 확인하는 것은 불가능하기 때문에 순수한 VCI 실제의 예를 확립하는 데에는 어려움이 많다. 또한 심혈관 질환들은 기억 상실에 직접적으로 기여하는 해마 위축도 연관되어 있다. 3) 그러므로 저자들은 인지 변화를 초래할 수 있는 어떠한 혈관 이상을 봉할 수 있는 "우산 개념(umbrella concept)"을 혈관인지장애에 대한 대량적 입장을 취하였다.

 중요한 진보는 AD와 마찬가지로 혈관성 치매로 연속된 심각성이 큰 결과 나타내는 인식이 있어 왔다는 점이다. 다른 한 곳은 치매가 없는 VCI, 혹은 비기능적실행 정도인지장애(mild cognitive impairment, MCI)로서 불리우는 일상생활 에 경미한 결손을 보이는 경우들을 연구한 것이다. 4) 장기 연구 결과, 이는 경미한 변화를 가진 환자들이 더 심각한 중후군으로 발전 할 수 있는 위험을 보인다는 점에서 이러한 질환을 확장하는 것은 중요하다. 5) VCI의 경우 큰 혈관 정체에서부터 일차성 정환에 이르는 신경학적 소실 지역 '혈관 질환은 신경학적 실패에 의하여 발생한다'는 뜻 때문에 경미한 중후군의 경우 초기에 VCI로 인식되지 않았다. 따라서 VCI의 중요 기본 정체는toa 조정과 같은 기능이 들어될 수 없는 손상을 일으키는 경우로 전체되었다. 결과적으로 정보 처리, 주의, 작업 기억과 같은 역 동적 상황의 인지 기능과 혈류의 역동적 생리가 어떻게 나타나는다는 사실은 흥미롭다. 이러한 인지 기능들이 혈류학적 손상에 전형적으로 따라하면서, 이 혈류학적 손상을 확실히 하는 것이 AD와 같이 대뇌 피질의 퇴행성 원인에 기인한 인지장애를 구분하는 데 도움이 될 수 있다.

인지 감퇴의 가역적 원인으로서의 대뇌반구의 관류저하

대뇌반구의 관류저하는 일으킬 수 있는 대혈관 질환은 대뇌 혈류학적 효과에 대한 면역 증가가 될 수 있다. 경동맥 패색으로 인한 뇌관류압 저하는 희혈성 대뇌를 보존하기 위한 세 동맥의 확장과 산소 수준 증가와 같은 증가되는 혈류학적 반응을 유도한다. 5) 추가적으로 정주압이 저하될 경우 희혈이 발생하거나, 혹은 더 진행되어 뇌관류를 확장하게 된다. 그러나 자가 조절 반응의 일부분이 이러한 혈류학적 변화는 희혈의 가역적 변화를 유도하고 부전적으로는 뇌 기능의 회복 을 돕는다. 6) 경동맥 패색 질환과 치매의 연관성에 대한 보고의 시작은 1954년 Miller Fisher의 진행성 치매를 보인 양측 경동맥 패색 환자, 치매가 최초로 있었다. 7) 많은 경동맥 치료 연구들은 수술 전후의 인지 기능을 측정하여, 수술이 인지 기능에 효과가 있을 수 있다는 비인위적인 결과들을 내놓았다. 8) 9) 인지기능에 대한 경동맥 질환의 영향에 대한 체계적인 고찰도 아직 경계에 이르지 못하고 있다. 10) 경동맥내막질세증(carotid endarterectomy) 혹은 경동맥 스플레이트 전후의 인지 기능을 평가한 최근의 32개 연구에 대한 고찰에서 5개의 연구는 수술 후 인지 감퇴가, 6개의 연구는 변화 없음을, 나머지 연구에서는 다양한 도메인에서의 인지 기능이 향상된 것으로 보고하였다. 11) 봉황단하 연구마다 인지장애를 측정하는 방법이 다양하였고, 어떠한 연구도 혈류를 측정하지 않았다.


양측 경동맥 패색과 약간으로 심한 행동 및 인지 기능 이상을 보인 55세 남성 환자를 대상으로 Tatemichi 등에 의해 혈류 측정이 시도되었다. 15) 경정맥 CBF 및 PET (positron emission tomography, 양전자방출단층촬영) 결과 40~50% 정도의 혈류 감소 및 대뇌 저하가 확인되었다. 두개외-두개내 혈관 우회판 이후 환자는 CBF 및 대뇌 정맥의 호전과 함께 신경심리학적 호전을 보였다. 더 큰 사례 보고, 편측 경동맥 패색과
반약한 심혈관 기능을 보인 환자 25명에게 두개의-두개내 혈관 우회술을 시행하였다.26 인지 기능의 향상은 CBF의 증가, CVR의 증가 및 감소된 산소 수축 운동과 상관이 있는 것으로 조사되었다. 두개의-두개내 혈관 우회술이 인지 기능을 향상시키고 약화를 예방할 수 있다는 가능성이 RECOX (Randomized Evaluation of Carotid Occlusion Neurocognition) trial과27, COSS (Carotid Occlusion Surgery Study) 보조 연구에서 공식적으로 연구되었다. 이 연구에서는 최근에 증상을 유발한 경동맥 폐색 환자들에게 PET 측정이 이루어졌다. 소위 2단계 혈류역학적 부정을 시사하는 증가된 산소 수축 운동을 보인 환자들을 대상으로, 반수에서는 두개의-두개내 혈관 우회술을, 나머지 반수에서는 최신의 내과적 치료가 이루어졌다. 대뇌부에 국한된, 혹은 전반적인 인지 기능 검사가 기저점과 무작위 헷갈 지하 2년 뒤에 시행되었다. 수술군과 내과적 치료군의 2단계 인지 기능 점수의 차이는 혈류역학적 부정을 보인 환자들에 게서 시사한 직접적인 대뇌 혈류역학적 치료가 대뇌부의 재판류에 의해 호전이 되는지에 의하여 결정될 것이다. 인지 기능에 대한 재판류의 긍정적인 효과를 증명하는 것은 무작위 임상 실험의 범위 내에서 혈류역학적 원인으로 인한 가역적인 인지 기능 저하를 증명할 수 있는 첫 번째 증례가 될 것이다.

전대뇌 혈류역학적 이상으로 인한 심장 실절환에서의 인지기능장애

효혈심부전(heumatic heart failure, CHF)은 뇌 전체의 관련 작하가 인지기능장애에 미치는 영향을 연구할 수 있는 모델이다. 심장 심전 혹은 CBF의 감소가 인지장애에 영향을 줄 수도 있으나, 심부전이 점점 심해지면 CHF는 주로 인지기능장애의 우병증 증상과 대조된다.28 Choi 등은 대 조군에 비해 CHF를 가진 환자에서 전반적인 CBF가 19% 이상 감소된 것을 보고하였다.28 심장 심질환 환자를 보이는 심전, 심박동수증가는 달리, 낮어진 CBF는 뇌에 분포된 부위에 따라 기역, 주의 및 실행 기능과 같은 조건에 복잡한 인지 기능에 영향을 미치게 된다.

Zuccala 등은 인지 기능이 심부전에 의하여 영양을 받을 수 있음을 보인 최고 연구진 중의 한 명이다.29 CHF를 가진 57명의 호흡 환자에서 인지 기능의 저하는 30% 이상의 심부전 환자에서 관찰되었다. 세부적인 심혈관계 검사 결과, 모든 인지 기능이 심혈관계 이상에 동등하게 저하되는 것은 영향을 미치지 않았다. Vogels 등이 NHA (New York Heart Association) 2, 3단계 환자를 대상으로 한 연구에서, CHF를 가진 환자들은 낮게 분포된 처리 기술이 상당히 저하되어 있는 데 반해, 인식과 같은 내과 인지 기능은 대조군과 별다른 차이가 없었다. 저자는 16명의 심장지격 이상이 있는 환자를 연구한 결과 정상인들과 비교하였다.30 심한 심부전을 보인 환자들의 경우 낮게 확산된 영역의 인지 기능이 영향을 받는 것으로 조사되었다.

대뇌 혈류역학적 치료의 관계에 대한 추가적인 규명은 내과적 혹은 신경학적 치료를 통해 심박출량을 회복시키는 것으로부터 연구될 수 있다. Zuccala 등은 졸상적으로 전 200명의 심부전 환자를 대상으로 시행한 연구에서 CBF에 긍정적인 효과를 가져다주는 것으로 알려진 안지오텀실질효소억제제 (angiotensin converting enzyme inhibitor) 복용을 시사한 경우 병원에 입원한 기간 동안 인지 기능을 향상시킬 가능성이 증가하는 것으로 조사되었다.31 심장이식 후의 치료를 높은 다른 증상들도 제시하고 있다. 최근 몇 년간에서 심장 이식 후 인지 기능에 이의 있는 것으로 보고되었다.32,33 인지 기능의 변화에 주의를 보이면서 CBF의 향상을 지지하는 기계론적인 혈류와 두개경우도플러(transcranial Doppler) 연구 결과들이 제시되고 있다.34,35

대뇌 관류저하는 인지 기능 저하 및 회복을 개개하는 것으로 간주될 수 있으나, 전행의 혈류를 급격히 개선한 경우 동등 백내막혈류 혹은 혈관형혈류 이후의 재관류 손상과 유사한 위험을 일으킬 수 있다.36 저자는 최고 병기 증상을 입힌 환자 69명을 조사한 결과, 19명에서 인지 속도 저하와 부주의와 같은 신경학적 이상이 발생하는 것을 확인하였다. 이러한 환자들의 경우 경정 난시증가를 초래할 수 있는 심장 지수(cardiac index)의 증가와 관찰이 있는 것으로 나타났다. 인지장애를 보인 환자 19명 중 16명에서 최심질 보조를 검사시킨 결과, 14명에서 증상의 호전을 보였다.

종합적으로 이러한 심부전 연구로부터의 증례들은 중간 범위의 CBF 영역에서 인지 기능의 최적화를 보이는 것을 시사한 다(Figure 1). CBF가 너무 높거나 낮을 경우 인지 기능 저하를 보이며, CBF를 정상화시킬 경우 인지 기능을 회복할 수 있다.
미세혈관 혈출에서의 혈관 이상과 연관된 인지장애

대뇌혈관 절환으로 인한 만성적 뇌관류저하 혹은 심부전으 로 인한 전뇌관류저하가 없는 상태에도 뇌종양의 환자들을 가진 환자의 경우 대뇌 미세혈관은 혈류학적 기능의 변화를 겪는다. 이러한 환자들에게 고향암, 당뇨병 및 혈관 내피에 대한 직접적인 효과는 CBF와 혈관 반응성과 관련된 것으로 보인다. 그러나 이러한 환자들에게 소관혈 뇌정맥이 동반된 경우가 많기 때문에 혈류학적 변화와 인지장애의 직접적인 인과관계를 증명하는 것은 쉽지 않다. 그럼에도 불구하고 전뇌 혹은 대뇌범구 혈류학적 장애에서는 같이 이상 미세혈관 혈류학을 변화시켜 인지장애를 개선시킬 수 있는 가능성을 존재한다.

고혈압은 혈관 기능에 대한 효과 때문에 지금까지 가장 많이 연구된 위험인자이다. 한 연구에서 동맥의 단단함을 나타내는 경동맥-대퇴동맥 밸커 속도(pulse wave velocity, PWV)가 고혈압을 한 번도 치료한 적이 없는 고향의 환자들에게 측정한 MMSE 약화와 연관관계가 있음을 보고되었다. 이 연구에서 무증상 뇌경색과 관련된 평가는 없었다. 그러나 동맥의 단단함이 증가한 환자들이 인지장애를 설명할 만한 무증상 뇌경색을 가졌을 가능성도 있었다. 고혈압과 즐꺼운 난성은 대상으로 한 연구에서 PWV가 적어 용량의 저하, 실패 기능의 저하 및 기억장애와 연관이 있는 정도와의 인지기능의 중심적 역할을 중요하다(intima-media thickness, IMT)에 연관이 있었다. 그러나 이 연구에서도 뇌영상에 대한 자료가 없어서 혈관기능장애와 인지 장애에 증가지시로서의 뇌경색이 존재하였을 가능성은 배제할 수 없었다. 경동맥 관련 Johnston의 연구에서도 IMT가 인지 장애와 관련이 있었는데, 이는 IMT가 인지장애에 기여하는 혈관기능장애의 변증화되지 않는 표지자일 수 있다면 것을 시사한다.

고혈압 뿐만 아니라 저혈압 역시 인지장애의 발생에 혈류학적 역할을 한다. 치매 환자들의 CBF가 감소되어 있 고 대뇌 관류저하가 이전에 언급한 바와 같이 대뇌혈관 절환 및 심부전 환자에서의 인지장애와 연관이 있기 때문에 이러한 가설은 설득력이 있다. 그러나 치매 환자들에서 보이는 CBF의 감소는 단순히 대사 저하, 혹은 치매 과정의 결과에 대한 반영일 수 있다.

낮붙어 혈류학적 인지장애의 형태생리학적 연관성은 백색 절 고신호 강도(white matter hyperintensity, WMH)에 주목 하고 있다. WMH가 만성적인 저관류에 기인한다는 증거나 있다. CVR는 WMH가 있을 때 낮은 것으로 보고되었다. 원인에 관계없이 이러한 병리학적 변화는 인지 감퇴와 관련이 있는 것으로 알려져 있다. Fu 등은 뇌종양, 혹은 중증한 대혈관 절환으로 60세 이상의 환자에게 MRI를 시행하여 WMH와 혈류학적 기능 저하에 대한 관련성을 연구하였다. 결과, WMH 크기는 TCD에서 측정된 CVR와 역의 연관관계가 있었다.

다른 뇌종양 위험인자들 역시 대뇌 혈류학적 약화와 연관되어 있다. Giannopoulos 등은 83명을 대상으로 한 환자에서 심한 경동맥 반대측의 CVR 장애와 대뇌증후군의 연관성을 연구하였다. 결과, 혈관 내피에 대한 효과를 저닌 대뇌증후군의 신호와 혈류학적 기능 저하에 대한 관련성을 연구하였다. 또한 WMH와 초기 치매를 동시에 보이는 CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarction and leukencephalopathy) 환자에서 혈류관련 혈관 이상이 혈관 폐화근 세포의 퇴행 및 과립 오스는 첨화성 물질(granular osmophilic material, GOM)의 축적이 발생하기 이전부터 존재한다는 것이 밝혀졌다.
발전 방향
이 폭론에서 논의된 임상 연구들의 성공과 실패에 근본하여 저자들은 ‘어미한 중요한 변수가 혈류와 인지 기능의 관계에 대한 앞으로의 연구에 반영되어야 한다’고 제안한다(Table 참조). 첫째로, 연구는 PET, arterial spin labeling MRI, TCD 혈관 반응성의 차이 조작 및 기능적 MRI에서의 과적산화 및 소 유방 산소 농도 수준의 변화를 이용한 혈류와 같은 혈류역학적 변수들의 정량적 측정을 포함하여야 한다. 둘째로, 인지 기능 평가에 있어 주의, 실행 기능과 같이 관리적 문제에 논의하고, 정신적 질환과 같은 편측applicant과 같은 인체의 기능을 연구하는 것과 같이 연구실 문헌에 특이적인 인지 기능들이 이 연구에 반드시 포함되어야 한다.셋째로, 이전의 뇌영양 병력, 소혈관 경색, 미세혈관병 및 WMH가 공변수로 반드시 고려되어야 한다. 넷째로, 우울증, 신부전, 간 기능상태, 폐 질환 및 인지 기능에 영향을 미칠 수 있는 변수들을 통제하거나 제외하여야 한다. 혈류와 인지 기능의 복합관 관계, 세심한 연구 설계와 정확적으로 관찰이 있는 변수들에 대한 세밀한 고려 만이 환자의 임상 결과를 변화시키고 추후의 연구 영역을 변화시킬 것이다.

Sources of Funding
This work was supported by the Doris and Stanley Tanbaum Family Foundation and by National Institute of Health/National Institute of Neurological Disorders and Stroke R01 NS048212 (R.S.M.) and National Institutes of Health/National Heart, Lung and Blood Institute IP50 HL077096 (R.M.L.).

Disclosures
None.

References
1. Iadecola C, Gorelick PB. Converging pathogenic mechanisms in vascular and neurodegenerative dementia. Stroke. 2003;34:335-337.
10. Nyenhuis DL, Gorelick PB. Diagnosis and management of vascular


