Letter to the Editor

Stroke welcomes Letters to the Editor and will publish them, if suitable, as space permits. Letters must reference a Stroke published-ahead-of-print article or an article printed within the past 3 weeks. The maximum length is 750 words including no more than 5 references and 3 authors. Please submit letters typed double-spaced. Letters may be shortened or edited. Include a completed copyright transfer agreement form (available online at http://stroke.ahajournals.org and http://submit-stroke.ahajournals.org).

Letter Regarding Brouns et al, Baptista et al, and Wozniak et al

To the Editor:

We congratulate the authors of the 3 recent studies addressing the prevalence of Fabry disease (FD) in stroke.1–3 Previous studies provided conflicting results with no practical conclusion.4,5 However, early diagnosis of FD could be crucial because enzyme replacement therapy may prevent severe disease manifestations.6 The 3 studies differ according to populations enrolled.1–3 Two studies considered ischemic or hemorrhagic strokes,1,2 although the relation between FD and hemorrhagic stroke is unclear. Moreover, these 2 studies included patients regardless of stroke etiology, which may have led to underestimation of FD. The other study considered cryptogenic ischemic strokes only,3 but there was no definition for cryptogenic stroke. The studies also differed according to the method used for FD diagnosis. Screening for FD reliably can be performed by α-galactosidase A analysis in men, whereas gene mutation analysis is required in women. Although 2 studies used this approach,1,3 the PORTYSTROKE study measured enzyme activity only in patients with identified gene mutation.2 However, the pathological role of some polymorphisms (eg, D313Y, which is associated with a pseudodeficient plasmatic activity) is uncertain.

Interestingly, despite these differences, the results of the 3 studies are consistent: the prevalence of FD among stroke patients is low. Thus, using all available studies and excluding patients with D313Y mutation, the combined prevalence is 1.34% (95% CI, 0.21–3.42) in men and 1.45% (95% CI, 0.65–2.57) in women (Figure).7,8 Heterogeneity across studies is mainly accounted for by the Rolfs et al study, which reported a high prevalence of enzymatic deficiency but no information on mutation analyses.

The main practical implication of these findings is that the yield of screening for FD is low and that systematic screening in young stroke patients is not justified. However, the diagnosis of FD must not be missed because it has implications for the patient and family. Recent data of a FD registry found that 50% of men and 38% of women had a history of stroke before the diagnosis of FD was established.9 Moreover, stroke preceded cardiac and renal manifestations in 70% of cases, suggesting that stroke is

<table>
<thead>
<tr>
<th>Study, year</th>
<th>N patients</th>
<th>N with FD</th>
<th>Proportion, % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rolfs, 2005</td>
<td>432</td>
<td>21</td>
<td>4.86 (3.03-7.33)</td>
</tr>
<tr>
<td>Brouns, 2007</td>
<td>64</td>
<td>0</td>
<td>0.00 (0.00-5.60)</td>
</tr>
<tr>
<td>Baptista, 2010</td>
<td>300</td>
<td>3</td>
<td>1.00 (0.21-2.89)</td>
</tr>
<tr>
<td>Brouns, 2010</td>
<td>547</td>
<td>2</td>
<td>0.37 (0.04-1.31)</td>
</tr>
<tr>
<td>Wozniak, 2010</td>
<td>154</td>
<td>1</td>
<td>0.65 (0.02-3.56)</td>
</tr>
<tr>
<td>Combined proportion</td>
<td></td>
<td></td>
<td>1.34 (0.21-3.42)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study, year</th>
<th>N patients</th>
<th>N with FD</th>
<th>Proportion, % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rolfs, 2005</td>
<td>289</td>
<td>7</td>
<td>2.40 (1.00-4.90)</td>
</tr>
<tr>
<td>Brouns, 2007</td>
<td>39</td>
<td>0</td>
<td>0.00 (0.00-9.00)</td>
</tr>
<tr>
<td>Baptista, 2010</td>
<td>193</td>
<td>3</td>
<td>1.60 (0.30-4.50)</td>
</tr>
<tr>
<td>Brouns, 2010</td>
<td>453</td>
<td>3</td>
<td>0.70 (0.10-1.90)</td>
</tr>
<tr>
<td>Combined proportion</td>
<td></td>
<td></td>
<td>1.45 (0.65-2.57)</td>
</tr>
</tbody>
</table>

Figure. Pooled estimates of the prevalence of Fabry disease (FD) in stroke populations. Each individual proportion was first transformed into a quantity with the Freeman-Tukey variance-stabilizing transformation. A weighted mean of the transformed proportions was computed with a DerSimonian-Laird random-effects model. The combined proportion was calculated as the back-transformation of this weighted mean.
commonly the first manifestation of FD. If the true prevalence of FD is \(\approx 1\% \) in young stroke patients, then we may speculate that FD is currently underdiagnosed in practice.

None of the 3 recent studies was designed to identify which patients should be screened. Curiously, no study reported on family history data of patients identified as having FD. Therefore, pending further studies that would help identify patients at high risk for FD, we believe that screening for FD should be restricted to patients with family history compatible with FD. These arguments can be easily retrieved through a detailed interrogation and simple tests, considering that neomutations are rare in FD.

Disclosures
Dr Lidove has received support and/or travel fees from Shire HGT, Actelion, and Genzyme. Dr Joly has received grants from Shire HGT and Genzyme. Dr Touzé has received consulting fees from Shire HGT.

Olivier Lidove, MD
Université Paris 7
Assistance Publique-Hôpitaux de Paris
Hôpital Bichat
Service de Médecine Interne
Paris, France

Dominique Joly, MD, PhD
Université Paris Descartes
Assistance Publique-Hôpitaux de Paris
Hôpital Necker
Service de Néphrologie
Paris, France

Emmanuel Touzé, MD, PhD
Université Paris Descartes
INSERM U894

Letter Regarding Brouns et al, Baptista et al, and Wozniak et al
Olivier Lidove, Dominique Joly and Emmanuel Touzé

Stroke. 2011;42:e4-e5; originally published online December 9, 2010;
doi: 10.1161/STROKEAHA.110.591776
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://stroke.ahajournals.org/content/42/1/e4

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published
in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office.
Once the online version of the published article for which permission is being requested is located, click
Request Permissions in the middle column of the Web page under Services. Further information about this
process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org//subscriptions/